tf.contrib.distributions.Dirichlet.pmf()

tf.contrib.distributions.Dirichlet.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_prob()

tf.contrib.distributions.BetaWithSoftplusAB.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters

tf.contrib.distributions.ExponentialWithSoftplusLam.parameters Dictionary of parameters used by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.clone(name=None, **dist_args)

tf.contrib.distributions.NormalWithSoftplusSigma.variance()

tf.contrib.distributions.NormalWithSoftplusSigma.variance(name='variance') Variance.

tf.contrib.distributions.MultivariateNormalDiag.log_sigma_det()

tf.contrib.distributions.MultivariateNormalDiag.log_sigma_det(name='log_sigma_det') Log of determinant of covariance matrix.

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.distribution

tf.contrib.learn.monitors.ExportMonitor

class tf.contrib.learn.monitors.ExportMonitor Monitor that exports Estimator every N steps.

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.distribution