tf.contrib.rnn.AttentionCellWrapper.__init__()

tf.contrib.rnn.AttentionCellWrapper.__init__(cell, attn_length, attn_size=None, attn_vec_size=None, input_size=None, state_is_tuple=False) Create a cell with attention. Args: cell: an RNNCell, an attention is added to it. attn_length: integer, the size of an attention window. attn_size: integer, the size of an attention vector. Equal to cell.output_size by default. attn_vec_size: integer, the number of convolutional features calculated on attention state and a size of the hidden layer buil

tf.contrib.distributions.Exponential.allow_nan_stats

tf.contrib.distributions.Exponential.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1

tf.nn.rnn_cell.DropoutWrapper.zero_state()

tf.nn.rnn_cell.DropoutWrapper.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. dtype: the data type to use for the state. Returns: If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size x state_size] filled with zeros. If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the sha

tf.contrib.distributions.MultivariateNormalCholesky.get_event_shape()

tf.contrib.distributions.MultivariateNormalCholesky.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Dirichlet.log_survival_function()

tf.contrib.distributions.Dirichlet.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double T

tf.contrib.learn.Estimator.partial_fit()

tf.contrib.learn.Estimator.partial_fit(x=None, y=None, input_fn=None, steps=1, batch_size=None, monitors=None) Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to

tf.contrib.graph_editor.make_view()

tf.contrib.graph_editor.make_view(*args, **kwargs) Create a SubGraphView from selected operations and passthrough tensors. Args: *args: list of 1) regular expressions (compiled or not) or 2) (array of) tf.Operation 3) (array of) tf.Tensor. Those objects will be converted into a list of operations and a list of candidate for passthrough tensors. **kwargs: keyword graph is used 1) to check that the ops and ts are from the correct graph 2) for regular expression query Returns: A subgraph view

tensorflow::Tensor::FromProto()

bool tensorflow::Tensor::FromProto(const TensorProto &other) TF_MUST_USE_RESULT Parse other and construct the tensor. Returns true iff the parsing succeeds. If the parsing fails, the state of *this is unchanged.

tf.image.extract_glimpse()

tf.image.extract_glimpse(input, size, offsets, centered=None, normalized=None, uniform_noise=None, name=None) Extracts a glimpse from the input tensor. Returns a set of windows called glimpses extracted at location offsets from the input tensor. If the windows only partially overlaps the inputs, the non overlapping areas will be filled with random noise. The result is a 4-D tensor of shape [batch_size, glimpse_height, glimpse_width, channels]. The channels and batch dimensions are the same as

tf.contrib.distributions.Mixture.survival_function()

tf.contrib.distributions.Mixture.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.