tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.graph

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.graph

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.input_dict

tf.contrib.learn.monitors.RunHookAdapterForMonitors

class tf.contrib.learn.monitors.RunHookAdapterForMonitors Wraps monitors into a SessionRunHook.

tf.contrib.graph_editor.reroute_a2b_inputs()

tf.contrib.graph_editor.reroute_a2b_inputs(sgv0, sgv1) Re-route all the inputs of sgv0 to sgv1 (see reroute_inputs).

tf.contrib.distributions.MultivariateNormalCholesky.entropy()

tf.contrib.distributions.MultivariateNormalCholesky.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.Bernoulli.pmf()

tf.contrib.distributions.Bernoulli.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.dtype

tf.contrib.learn.extract_dask_labels()

tf.contrib.learn.extract_dask_labels(labels) Extract data from dask.Series for labels.

tf.contrib.distributions.Uniform.is_reparameterized

tf.contrib.distributions.Uniform.is_reparameterized

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_batch_shape()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.