tf.contrib.distributions.Multinomial.sample()

tf.contrib.distributions.Multinomial.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.learn.monitors.SummarySaver.step_end()

tf.contrib.learn.monitors.SummarySaver.step_end(step, output) Overrides BaseMonitor.step_end. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. output: dict mapping string values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy array, for non-scalar tensors. Returns: bool, the result of every_n_step_end, if that was called this step

tf.contrib.distributions.Distribution.pmf()

tf.contrib.distributions.Distribution.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.Bernoulli.log_cdf()

tf.contrib.distributions.Bernoulli.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x) + sel

tf.contrib.distributions.StudentT.sample_n()

tf.contrib.distributions.StudentT.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.reduce_prod()

tf.reduce_prod(input_tensor, reduction_indices=None, keep_dims=False, name=None) Computes the product of elements across dimensions of a tensor. Reduces input_tensor along the dimensions given in reduction_indices. Unless keep_dims is true, the rank of the tensor is reduced by 1 for each entry in reduction_indices. If keep_dims is true, the reduced dimensions are retained with length 1. If reduction_indices has no entries, all dimensions are reduced, and a tensor with a single element is retur

tf.contrib.learn.LinearRegressor.__init__()

tf.contrib.learn.LinearRegressor.__init__(feature_columns, model_dir=None, weight_column_name=None, optimizer=None, gradient_clip_norm=None, enable_centered_bias=None, target_dimension=1, _joint_weights=False, config=None) Construct a LinearRegressor estimator object. Args: feature_columns: An iterable containing all the feature columns used by the model. All items in the set should be instances of classes derived from FeatureColumn. model_dir: Directory to save model parameters, graph, etc.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.learn.monitors.CheckpointSaver.__init__()

tf.contrib.learn.monitors.CheckpointSaver.__init__(checkpoint_dir, save_secs=None, save_steps=None, saver=None, checkpoint_basename='model.ckpt', scaffold=None) Initialize CheckpointSaver monitor. Args: checkpoint_dir: str, base directory for the checkpoint files. save_secs: int, save every N secs. save_steps: int, save every N steps. saver: Saver object, used for saving. checkpoint_basename: str, base name for the checkpoint files. scaffold: Scaffold, use to get saver object. Raises:

tf.contrib.distributions.Categorical.survival_function()

tf.contrib.distributions.Categorical.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.