tf.random_normal()

tf.random_normal(shape, mean=0.0, stddev=1.0, dtype=tf.float32, seed=None, name=None) Outputs random values from a normal distribution. Args: shape: A 1-D integer Tensor or Python array. The shape of the output tensor. mean: A 0-D Tensor or Python value of type dtype. The mean of the normal distribution. stddev: A 0-D Tensor or Python value of type dtype. The standard deviation of the normal distribution. dtype: The type of the output. seed: A Python integer. Used to create a random seed

tf.contrib.distributions.Exponential

class tf.contrib.distributions.Exponential The Exponential distribution with rate parameter lam. The PDF of this distribution is: prob(x) = (lam * e^(-lam * x)), x > 0 Note that the Exponential distribution is a special case of the Gamma distribution, with Exponential(lam) = Gamma(1, lam).

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.dtype

tf.contrib.distributions.Chi2.parameters

tf.contrib.distributions.Chi2.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pdf()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.DirichletMultinomial.prob()

tf.contrib.distributions.DirichletMultinomial.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from DirichletMultinomial: For each batch of counts [n_1,...,n_k], P[counts] is the probability that after sampling n draws from this Dirichlet Multinomial distribution, the number of draws falling in class j is n_j. Note that different sequences of draws can result in the same counts, thus the probability includes a combinatorial coeff

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.Laplace.log_cdf()

tf.contrib.distributions.Laplace.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x) + self.

tf.contrib.training.stratified_sample()

tf.contrib.training.stratified_sample(tensors, labels, target_probs, batch_size, init_probs=None, enqueue_many=False, queue_capacity=16, threads_per_queue=1, name=None) Stochastically creates batches based on per-class probabilities. This method discards examples. Internally, it creates one queue to amortize the cost of disk reads, and one queue to hold the properly-proportioned batch. See stratified_sample_unknown_dist for a function that performs stratified sampling with one queue per class

tf.contrib.learn.TensorFlowRNNRegressor.partial_fit()

tf.contrib.learn.TensorFlowRNNRegressor.partial_fit(x, y) Incremental fit on a batch of samples. This method is expected to be called several times consecutively on different or the same chunks of the dataset. This either can implement iterative training or out-of-core/online training. This is especially useful when the whole dataset is too big to fit in memory at the same time. Or when model is taking long time to converge, and you want to split up training into subparts. Args: x: matrix or t