tf.contrib.distributions.InverseGamma.entropy()

tf.contrib.distributions.InverseGamma.entropy(name='entropy') Shanon entropy in nats. Additional documentation from InverseGamma: This is defined to be entropy = alpha - log(beta) + log(Gamma(alpha)) + (1-alpha)digamma(alpha) where digamma(alpha) is the digamma function.

tf.contrib.distributions.InverseGamma.dtype

tf.contrib.distributions.InverseGamma.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.InverseGamma.cdf()

tf.contrib.distributions.InverseGamma.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.InverseGamma.beta

tf.contrib.distributions.InverseGamma.beta Scale parameter.

tf.contrib.distributions.InverseGamma.batch_shape()

tf.contrib.distributions.InverseGamma.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.InverseGamma.allow_nan_stats

tf.contrib.distributions.InverseGamma.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1

tf.contrib.distributions.InverseGamma.alpha

tf.contrib.distributions.InverseGamma.alpha Shape parameter.

tf.contrib.distributions.InverseGamma

class tf.contrib.distributions.InverseGamma The InverseGamma distribution with parameter alpha and beta. The parameters are the shape and inverse scale parameters alpha, beta. The PDF of this distribution is: pdf(x) = (beta^alpha)/Gamma(alpha)(x^(-alpha-1))e^(-beta/x), x > 0 and the CDF of this distribution is: cdf(x) = GammaInc(alpha, beta / x) / Gamma(alpha), x > 0 where GammaInc is the upper incomplete Gamma function. Examples: dist = InverseGamma(alpha=3.0, beta=2.0) dist2 = Inverse

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.__init__()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='GammaWithSoftplusAlphaBeta')

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.validate_args

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.validate_args Python boolean indicated possibly expensive checks are enabled.