tf.contrib.framework.model_variable()

tf.contrib.framework.model_variable(*args, **kwargs) Gets an existing model variable with these parameters or creates a new one. Args: name: the name of the new or existing variable. shape: shape of the new or existing variable. dtype: type of the new or existing variable (defaults to DT_FLOAT). initializer: initializer for the variable if one is created. regularizer: a (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the colle

tf.contrib.distributions.TransformedDistribution.log_survival_function()

tf.contrib.distributions.TransformedDistribution.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: flo

tf.contrib.framework.get_model_variables()

tf.contrib.framework.get_model_variables(scope=None, suffix=None) Gets the list of model variables, filtered by scope and/or suffix. Args: scope: an optional scope for filtering the variables to return. suffix: an optional suffix for filtering the variables to return. Returns: a list of variables in collection with scope and suffix.

tf.contrib.framework.deprecated()

tf.contrib.framework.deprecated(date, instructions) Decorator for marking functions or methods deprecated. This decorator logs a deprecation warning whenever the decorated function is called. It has the following format: (from ) is deprecated and will be removed after . Instructions for updating: will include the class name if it is a method. It also edits the docstring of the function: ' (deprecated)' is appended to the first line of the docstring and a deprecation notice is prepended to t

tf.contrib.rnn.LSTMBlockCell.zero_state()

tf.contrib.rnn.LSTMBlockCell.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. dtype: the data type to use for the state. Returns: If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size x state_size] filled with zeros. If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors with the shap

tf.imag()

tf.imag(input, name=None) Returns the imaginary part of a complex number. Given a tensor input of complex numbers, this operation returns a tensor of type float32 or float64 that is the imaginary part of each element in input. All elements in input must be complex numbers of the form (a + bj), where a is the real part and b is the imaginary part returned by this operation. For example: # tensor 'input' is [-2.25 + 4.75j, 3.25 + 5.75j] tf.imag(input) ==> [4.75, 5.75] Args: input: A Tensor.

tf.test.compute_gradient()

tf.test.compute_gradient(x, x_shape, y, y_shape, x_init_value=None, delta=0.001, init_targets=None) Computes and returns the theoretical and numerical Jacobian. If x or y is complex, the Jacobian will still be real but the corresponding Jacobian dimension(s) will be twice as large. This is required even if both input and output is complex since TensorFlow graphs are not necessarily holomorphic, and may have gradients not expressible as complex numbers. For example, if x is complex with shape [

tf.contrib.distributions.Laplace.param_shapes()

tf.contrib.distributions.Laplace.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.learn.TensorFlowEstimator.__init__()

tf.contrib.learn.TensorFlowEstimator.__init__(model_fn, n_classes, batch_size=32, steps=200, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, class_weight=None, continue_training=False, config=None, verbose=1) Initializes a TensorFlowEstimator instance. Args: model_fn: Model function, that takes input x, y tensors and outputs prediction and loss tensors. n_classes: Number of classes in the target. batch_size: Mini batch size. steps: Number of steps to run over data. optimizer:

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.input_dict