tf.contrib.graph_editor.Transformer.__init__()

tf.contrib.graph_editor.Transformer.__init__() Transformer constructor. The following members can be modified: transform_op_handler: handle the transformation of a tf.Operation. This handler defaults to a simple copy. assign_collections_handler: handle the assignment of collections. This handler defaults to assigning new collections created under the given name-scope. transform_external_input_handler: handle the transform of the inputs to the given subgraph. This handler defaults to creating p

tf.contrib.distributions.Chi2

class tf.contrib.distributions.Chi2 The Chi2 distribution with degrees of freedom df. The PDF of this distribution is: pdf(x) = (x^(df/2 - 1)e^(-x/2))/(2^(df/2)Gamma(df/2)), x > 0 Note that the Chi2 distribution is a special case of the Gamma distribution, with Chi2(df) = Gamma(df/2, 1/2).

tf.contrib.losses.sum_of_pairwise_squares()

tf.contrib.losses.sum_of_pairwise_squares(*args, **kwargs) Adds a pairwise-errors-squared loss to the training procedure. (deprecated) THIS FUNCTION IS DEPRECATED. It will be removed after 2016-10-01. Instructions for updating: Use mean_pairwise_squared_error. Unlike the sum_of_squares loss, which is a measure of the differences between corresponding elements of predictions and targets, sum_of_pairwise_squares is a measure of the differences between pairs of corresponding elements of predictio

tf.contrib.distributions.MultivariateNormalFull.log_cdf()

tf.contrib.distributions.MultivariateNormalFull.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_s

tf.contrib.learn.DNNRegressor.weights_

tf.contrib.learn.DNNRegressor.weights_

tf.nn.rnn_cell.LSTMCell

class tf.nn.rnn_cell.LSTMCell Long short-term memory unit (LSTM) recurrent network cell. The default non-peephole implementation is based on: http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf S. Hochreiter and J. Schmidhuber. "Long Short-Term Memory". Neural Computation, 9(8):1735-1780, 1997. The peephole implementation is based on: https://research.google.com/pubs/archive/43905.pdf Hasim Sak, Andrew Senior, and Francoise Beaufays. "Long short-term memory recurrent neural network archi

tf.where()

tf.where(input, name=None) Returns locations of true values in a boolean tensor. This operation returns the coordinates of true elements in input. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order. Fo

tf.contrib.distributions.WishartFull.cdf()

tf.contrib.distributions.WishartFull.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.QuantizedDistribution.log_pmf()

tf.contrib.distributions.QuantizedDistribution.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.graph_editor.filter_ops()

tf.contrib.graph_editor.filter_ops(ops, positive_filter) Get the ops passing the given filter. Args: ops: an object convertible to a list of tf.Operation. positive_filter: a function deciding where to keep an operation or not. If True, all the operations are returned. Returns: A list of selected tf.Operation. Raises: TypeError: if ops cannot be converted to a list of tf.Operation.