tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student'

tf.contrib.distributions.Gamma.__init__()

tf.contrib.distributions.Gamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='Gamma') Construct Gamma distributions with parameters alpha and beta. The parameters alpha and beta must be shaped in a way that supports broadcasting (e.g. alpha + beta is a valid operation). Args: alpha: Floating point tensor, the shape params of the distribution(s). alpha must contain only positive values. beta: Floating point tensor, the inverse scale params of the distribution(s). beta

tf.contrib.distributions.GammaWithSoftplusAlphaBeta

class tf.contrib.distributions.GammaWithSoftplusAlphaBeta Gamma with softplus transform on alpha and beta.

tf.contrib.distributions.Gamma.variance()

tf.contrib.distributions.Gamma.variance(name='variance') Variance.

tf.contrib.distributions.Gamma.survival_function()

tf.contrib.distributions.Gamma.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Gamma.validate_args

tf.contrib.distributions.Gamma.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Gamma.sample_n()

tf.contrib.distributions.Gamma.sample_n(n, seed=None, name='sample_n') Generate n samples. Additional documentation from Gamma: See the documentation for tf.random_gamma for more details. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Gamma.std()

tf.contrib.distributions.Gamma.std(name='std') Standard deviation.

tf.contrib.distributions.Gamma.sample()

tf.contrib.distributions.Gamma.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Gamma.prob()

tf.contrib.distributions.Gamma.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.