tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_pdf()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma

class tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma StudentT with df = floor(abs(df)) and sigma = softplus(sigma).

tf.contrib.distributions.ExponentialWithSoftplusLam.pmf()

tf.contrib.distributions.ExponentialWithSoftplusLam.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_prob()

tf.contrib.distributions.ExponentialWithSoftplusLam.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pdf()

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Mixture.cdf()

tf.contrib.distributions.Mixture.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Binomial.validate_args

tf.contrib.distributions.Binomial.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.learn.TensorFlowEstimator.set_params()

tf.contrib.learn.TensorFlowEstimator.set_params(**params) Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names.

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution