tf.contrib.distributions.DirichletMultinomial.parameters

tf.contrib.distributions.DirichletMultinomial.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.DirichletMultinomial.n

tf.contrib.distributions.DirichletMultinomial.n Parameter defining this distribution.

tf.contrib.distributions.DirichletMultinomial.mode()

tf.contrib.distributions.DirichletMultinomial.mode(name='mode') Mode.

tf.contrib.distributions.DirichletMultinomial.name

tf.contrib.distributions.DirichletMultinomial.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.DirichletMultinomial.mean()

tf.contrib.distributions.DirichletMultinomial.mean(name='mean') Mean.

tf.contrib.distributions.DirichletMultinomial.log_survival_function()

tf.contrib.distributions.DirichletMultinomial.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float

tf.contrib.distributions.DirichletMultinomial.log_prob()

tf.contrib.distributions.DirichletMultinomial.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from DirichletMultinomial: For each batch of counts [n_1,...,n_k], P[counts] is the probability that after sampling n draws from this Dirichlet Multinomial distribution, the number of draws falling in class j is n_j. Note that different sequences of draws can result in the same counts, thus the probability includes a combina

tf.contrib.distributions.DirichletMultinomial.log_pmf()

tf.contrib.distributions.DirichletMultinomial.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.DirichletMultinomial.log_pdf()

tf.contrib.distributions.DirichletMultinomial.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.DirichletMultinomial.log_cdf()

tf.contrib.distributions.DirichletMultinomial.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_sha