tensorflow::PartialTensorShapeUtils::PartialShapeListString()

string tensorflow::PartialTensorShapeUtils::PartialShapeListString(const gtl::ArraySlice< PartialTensorShape > &shapes)

tf.reduce_max()

tf.reduce_max(input_tensor, reduction_indices=None, keep_dims=False, name=None) Computes the maximum of elements across dimensions of a tensor. Reduces input_tensor along the dimensions given in reduction_indices. Unless keep_dims is true, the rank of the tensor is reduced by 1 for each entry in reduction_indices. If keep_dims is true, the reduced dimensions are retained with length 1. If reduction_indices has no entries, all dimensions are reduced, and a tensor with a single element is return

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.loss(final_loss, name='Loss')

tf.lgamma()

tf.lgamma(x, name=None) Computes the log of the absolute value of Gamma(x) element-wise. Args: x: A Tensor. Must be one of the following types: half, float32, float64. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.contrib.distributions.Dirichlet.batch_shape()

tf.contrib.distributions.Dirichlet.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Bernoulli.variance()

tf.contrib.distributions.Bernoulli.variance(name='variance') Variance.

tf.OpError.error_code

tf.OpError.error_code The integer error code that describes the error.

tf.contrib.distributions.Bernoulli.sample_n()

tf.contrib.distributions.Bernoulli.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.sparse_to_dense()

tf.sparse_to_dense(sparse_indices, output_shape, sparse_values, default_value=0, validate_indices=True, name=None) Converts a sparse representation into a dense tensor. Builds an array dense with shape output_shape such that # If sparse_indices is scalar dense[i] = (i == sparse_indices ? sparse_values : default_value) # If sparse_indices is a vector, then for each i dense[sparse_indices[i]] = sparse_values[i] # If sparse_indices is an n by d matrix, then for each i in [0, n) dense[sparse_ind

tf.is_strictly_increasing()

tf.is_strictly_increasing(x, name=None) Returns True if x is strictly increasing. Elements of x are compared in row-major order. The tensor [x[0],...] is strictly increasing if for every adjacent pair we have x[i] < x[i+1]. If x has less than two elements, it is trivially strictly increasing. See also: is_non_decreasing Args: x: Numeric Tensor. name: A name for this operation (optional). Defaults to "is_strictly_increasing" Returns: Boolean Tensor, equal to True iff x is strictly increa