tf.contrib.distributions.Beta.cdf()

tf.contrib.distributions.Beta.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.parameters

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.parameters Dictionary of parameters used by this Distribution.

tf.contrib.learn.DNNClassifier.predict_proba()

tf.contrib.learn.DNNClassifier.predict_proba(*args, **kwargs) Returns prediction probabilities for given features. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-15. Instructions for updating: The default behavior of predict() is changing. The default value for as_iterable will change to True, and then the flag will be removed altogether. The behavior of this flag is described below. Args: x: features. input_fn: Input function. If set, x and y must

tf.contrib.distributions.LaplaceWithSoftplusScale.__init__()

tf.contrib.distributions.LaplaceWithSoftplusScale.__init__(loc, scale, validate_args=False, allow_nan_stats=True, name='LaplaceWithSoftplusScale')

tf.contrib.learn.Estimator.get_params()

tf.contrib.learn.Estimator.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.distributions.MultivariateNormalFull.mu

tf.contrib.distributions.MultivariateNormalFull.mu

tf.contrib.learn.LinearRegressor.get_params()

tf.contrib.learn.LinearRegressor.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.distributions.Poisson.__init__()

tf.contrib.distributions.Poisson.__init__(lam, validate_args=False, allow_nan_stats=True, name='Poisson') Construct Poisson distributions. Args: lam: Floating point tensor, the rate parameter of the distribution(s). lam must be positive. validate_args: Boolean, default False. Whether to assert that lam > 0 as well as inputs to pmf computations are non-negative integers. If validate_args is False, then pmf computations might return NaN, but can be evaluated at any real value. allow_nan_st

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names()

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names() Returns list of all variable names in this model. Returns: List of names.

tf.contrib.rnn.GridLSTMCell.__call__()

tf.contrib.rnn.GridLSTMCell.__call__(inputs, state, scope=None) Run one step of LSTM. Args: inputs: input Tensor, 2D, batch x num_units. state: state Tensor, 2D, batch x state_size. scope: VariableScope for the created subgraph; defaults to "LSTMCell". Returns: A tuple containing: - A 2D, batch x output_dim, Tensor representing the output of the LSTM after reading "inputs" when previous state was "state". Here output_dim is num_units. - A 2D, batch x state_size, Tensor representing the ne