tf.contrib.distributions.Distribution.log_prob()

tf.contrib.distributions.Distribution.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Distribution.cdf()

tf.contrib.distributions.Distribution.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Bernoulli.allow_nan_stats

tf.contrib.distributions.Bernoulli.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is

tf.contrib.distributions.MultivariateNormalCholesky.log_pdf()

tf.contrib.distributions.MultivariateNormalCholesky.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_cdf()

tf.contrib.distributions.ExponentialWithSoftplusLam.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape samp

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.WishartCholesky.entropy()

tf.contrib.distributions.WishartCholesky.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.Normal.parameters

tf.contrib.distributions.Normal.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.entropy()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.entropy(name='entropy') Shanon entropy in nats.

tf.lgamma()

tf.lgamma(x, name=None) Computes the log of the absolute value of Gamma(x) element-wise. Args: x: A Tensor. Must be one of the following types: half, float32, float64. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.