tensorflow::EnvWrapper::GetSymbolFromLibrary()

Status tensorflow::EnvWrapper::GetSymbolFromLibrary(void *handle, const char *symbol_name, void **symbol) override

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student'

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.value_type

tf.contrib.distributions.BernoulliWithSigmoidP.name

tf.contrib.distributions.BernoulliWithSigmoidP.name Name prepended to all ops created by this Distribution.

tf.SparseTensor.values

tf.SparseTensor.values The non-zero values in the represented dense tensor. Returns: A 1-D Tensor of any data type.

tf.contrib.distributions.Categorical.mean()

tf.contrib.distributions.Categorical.mean(name='mean') Mean.

tf.contrib.distributions.BetaWithSoftplusAB.dtype

tf.contrib.distributions.BetaWithSoftplusAB.dtype The DType of Tensors handled by this Distribution.

tf.contrib.learn.Estimator.set_params()

tf.contrib.learn.Estimator.set_params(**params) Set the parameters of this estimator. The method works on simple estimators as well as on nested objects (such as pipelines). The former have parameters of the form <component>__<parameter> so that it's possible to update each component of a nested object. Args: **params: Parameters. Returns: self Raises: ValueError: If params contain invalid names.

tf.contrib.graph_editor.matcher.output_ops()

tf.contrib.graph_editor.matcher.output_ops(*args) Add output matches.

tf.contrib.learn.monitors.ExportMonitor.step_end()

tf.contrib.learn.monitors.ExportMonitor.step_end(step, output) Overrides BaseMonitor.step_end. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. output: dict mapping string values representing tensor names to the value resulted from running these tensors. Values may be either scalars, for scalar tensors, or Numpy array, for non-scalar tensors. Returns: bool, the result of every_n_step_end, if that was called this ste