tf.contrib.distributions.Dirichlet.cdf()

tf.contrib.distributions.Dirichlet.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.graph_editor.ControlOutputs.update()

tf.contrib.graph_editor.ControlOutputs.update() Update the control outputs if the graph has changed.

tf.contrib.distributions.Chi2WithAbsDf.validate_args

tf.contrib.distributions.Chi2WithAbsDf.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape()

tf.contrib.distributions.BernoulliWithSigmoidP.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.StudentT.cdf()

tf.contrib.distributions.StudentT.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.input_dict

tf.contrib.distributions.DirichletMultinomial.n

tf.contrib.distributions.DirichletMultinomial.n Parameter defining this distribution.

tf.contrib.graph_editor.Transformer

class tf.contrib.graph_editor.Transformer Transform a subgraph into another one. By default, the constructor create a transform which copy a subgraph and replaces inputs with placeholders. This behavior can be modified by changing the handlers.

tf.contrib.distributions.WishartCholesky.log_cdf()

tf.contrib.distributions.WishartCholesky.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x)

tf.contrib.distributions.Gamma.pdf()

tf.contrib.distributions.Gamma.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.