tf.contrib.rnn.GRUBlockCell.__init__()

tf.contrib.rnn.GRUBlockCell.__init__(cell_size) Initialize the Block GRU cell. Args: cell_size: int, GRU cell size.

tf.contrib.learn.monitors.PrintTensor.every_n_post_step()

tf.contrib.learn.monitors.PrintTensor.every_n_post_step(step, session) Callback after a step is finished or end() is called. Args: step: int, the current value of the global step. session: Session object.

tf.contrib.learn.monitors.SummarySaver.post_step()

tf.contrib.learn.monitors.SummarySaver.post_step(step, session)

tf.contrib.graph_editor.SubGraphView.remap_outputs_to_consumers()

tf.contrib.graph_editor.SubGraphView.remap_outputs_to_consumers() Remap the outputs to match the number of consumers.

tf.contrib.metrics.streaming_sparse_precision_at_k()

tf.contrib.metrics.streaming_sparse_precision_at_k(*args, **kwargs) Computes precision@k of the predictions with respect to sparse labels. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-10-19. Instructions for updating: ignore_mask is being deprecated. Instead use weights with values 0.0 and 1.0 to mask values. For example, weights=tf.logical_not(mask). If class_id is specified, we calculate precision by considering only the entries in the batch for which

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.name

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.name

tensorflow::Tensor::tensor_data()

StringPiece tensorflow::Tensor::tensor_data() const Returns a StringPiece mapping the current tensor's buffer. The returned StringPiece may point to memory location on devices that the CPU cannot address directly. NOTE: The underlying tensor buffer is refcounted, so the lifetime of the contents mapped by the StringPiece matches the lifetime of the buffer; callers should arrange to make sure the buffer does not get destroyed while the StringPiece is still used. REQUIRES: DataTypeCanUseMemcpy(dt

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous

tf.contrib.distributions.NormalWithSoftplusSigma.is_continuous

tensorflow::PartialTensorShape::dim_size()

int64 tensorflow::PartialTensorShape::dim_size(int d) const Returns the number of elements in dimension d. REQUIRES: 0 <= d < dims()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.loss(final_loss, name='Loss')