tf.contrib.bayesflow.stochastic_tensor.NormalTensor

class tf.contrib.bayesflow.stochastic_tensor.NormalTensor NormalTensor is a StochasticTensor backed by the distribution Normal.

tf.contrib.distributions.InverseGamma.is_reparameterized

tf.contrib.distributions.InverseGamma.is_reparameterized

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.is_reparameterized

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.is_reparameterized

tf.InteractiveSession.close()

tf.InteractiveSession.close() Closes an InteractiveSession.

tf.contrib.learn.DNNRegressor.config

tf.contrib.learn.DNNRegressor.config

tf.OpError.node_def

tf.OpError.node_def The NodeDef proto representing the op that failed.

tf.contrib.distributions.NormalWithSoftplusSigma

class tf.contrib.distributions.NormalWithSoftplusSigma Normal with softplus applied to sigma.

tf.errors.DataLossError.__init__()

tf.errors.DataLossError.__init__(node_def, op, message) Creates a DataLossError.

tensorflow::Tensor

Represents an n-dimensional array of values. Member Details tensorflow::Tensor::Tensor() Creates a 1-dimensional, 0-element float tensor. The returned Tensor is not a scalar (shape {}), but is instead an empty one-dimensional Tensor (shape {0}, NumElements() == 0). Since it has no elements, it does not need to be assigned a value and is initialized by default ( IsInitialized() is true). If this is undesirable, consider creating a one-element scalar which does require initialization: tensorflow:

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.graph

tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.graph