tf.contrib.distributions.BetaWithSoftplusAB.std()

tf.contrib.distributions.BetaWithSoftplusAB.std(name='std') Standard deviation.

tf.contrib.distributions.BetaWithSoftplusAB.sample_n()

tf.contrib.distributions.BetaWithSoftplusAB.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.BetaWithSoftplusAB.prob()

tf.contrib.distributions.BetaWithSoftplusAB.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from Beta: Note that the argument x must be a non-negative floating point tensor whose shape can be broadcast with self.a and self.b. For fixed leading dimensions, the last dimension represents counts for the corresponding Beta distribution in self.a and self.b. x is only legal if 0 < x < 1. Args: value: float or double Tensor. na

tf.contrib.distributions.BetaWithSoftplusAB.sample()

tf.contrib.distributions.BetaWithSoftplusAB.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.BetaWithSoftplusAB.pmf()

tf.contrib.distributions.BetaWithSoftplusAB.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.param_static_shapes()

tf.contrib.distributions.BetaWithSoftplusAB.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.BetaWithSoftplusAB.pdf()

tf.contrib.distributions.BetaWithSoftplusAB.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.param_shapes()

tf.contrib.distributions.BetaWithSoftplusAB.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.BetaWithSoftplusAB.mode()

tf.contrib.distributions.BetaWithSoftplusAB.mode(name='mode') Mode. Additional documentation from Beta: Note that the mode for the Beta distribution is only defined when a > 1, b > 1. This returns the mode when a > 1 and b > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.BetaWithSoftplusAB.parameters

tf.contrib.distributions.BetaWithSoftplusAB.parameters Dictionary of parameters used by this Distribution.