tf.nn.rnn_cell.BasicRNNCell

class tf.nn.rnn_cell.BasicRNNCell The most basic RNN cell.

tf.QueueBase

class tf.QueueBase Base class for queue implementations. A queue is a TensorFlow data structure that stores tensors across multiple steps, and exposes operations that enqueue and dequeue tensors. Each queue element is a tuple of one or more tensors, where each tuple component has a static dtype, and may have a static shape. The queue implementations support versions of enqueue and dequeue that handle single elements, versions that support enqueuing and dequeuing a batch of elements at once. Se

tf.contrib.distributions.BetaWithSoftplusAB.a

tf.contrib.distributions.BetaWithSoftplusAB.a Shape parameter.

tf.contrib.learn.monitors.CaptureVariable.epoch_begin()

tf.contrib.learn.monitors.CaptureVariable.epoch_begin(epoch) Begin epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've already begun an epoch, or epoch < 0.

tf.contrib.distributions.Beta.pmf()

tf.contrib.distributions.Beta.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.OpError.message

tf.OpError.message The error message that describes the error.

tf.contrib.distributions.BernoulliWithSigmoidP.entropy()

tf.contrib.distributions.BernoulliWithSigmoidP.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.BetaWithSoftplusAB.a_b_sum

tf.contrib.distributions.BetaWithSoftplusAB.a_b_sum Sum of parameters.

tf.contrib.distributions.Gamma.mean()

tf.contrib.distributions.Gamma.mean(name='mean') Mean.

tf.contrib.distributions.QuantizedDistribution.dtype

tf.contrib.distributions.QuantizedDistribution.dtype The DType of Tensors handled by this Distribution.