tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.loss(final_loss, name='Loss')

tf.SparseTensor.__truediv__()

tf.SparseTensor.__truediv__(sp_x, y) Internal helper function for 'sp_t / dense_t'.

tf.contrib.distributions.Categorical.mode()

tf.contrib.distributions.Categorical.mode(name='mode') Mode.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mu

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.mu Locations of these Student's t distribution(s).

tf.contrib.graph_editor.OpMatcher.__init__()

tf.contrib.graph_editor.OpMatcher.__init__(positive_filter) Graph match constructor.

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n

tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n

tf.contrib.framework.assign_from_values_fn()

tf.contrib.framework.assign_from_values_fn(var_names_to_values) Returns a function that assigns specific variables from the given values. This function provides a mechanism for performing assignment of variables to values in a way that does not fill the graph with large assignment values. Args: var_names_to_values: A map from variable names to values. Returns: A function that takes a single argument, a tf.Session, that applies the assignment operation. Raises: ValueError: if any of the giv

tf.contrib.learn.monitors.SummarySaver.end()

tf.contrib.learn.monitors.SummarySaver.end(session=None)

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.graph

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.graph

tf.contrib.bayesflow.variational_inference.ELBOForms.check_form()

tf.contrib.bayesflow.variational_inference.ELBOForms.check_form(form)