tf.contrib.distributions.BetaWithSoftplusAB.name

tf.contrib.distributions.BetaWithSoftplusAB.name Name prepended to all ops created by this Distribution.

tf.contrib.distributions.BetaWithSoftplusAB.mean()

tf.contrib.distributions.BetaWithSoftplusAB.mean(name='mean') Mean.

tf.contrib.distributions.BetaWithSoftplusAB.log_survival_function()

tf.contrib.distributions.BetaWithSoftplusAB.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or

tf.contrib.distributions.BetaWithSoftplusAB.log_prob()

tf.contrib.distributions.BetaWithSoftplusAB.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.log_pdf()

tf.contrib.distributions.BetaWithSoftplusAB.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_pmf()

tf.contrib.distributions.BetaWithSoftplusAB.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.BetaWithSoftplusAB.log_cdf()

tf.contrib.distributions.BetaWithSoftplusAB.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Additional documentation from Beta: Note that the argument x must be a non-negative floating point tensor whose shape can

tf.contrib.distributions.BetaWithSoftplusAB.is_reparameterized

tf.contrib.distributions.BetaWithSoftplusAB.is_reparameterized

tf.contrib.distributions.BetaWithSoftplusAB.is_continuous

tf.contrib.distributions.BetaWithSoftplusAB.is_continuous

tf.contrib.distributions.BetaWithSoftplusAB.get_batch_shape()

tf.contrib.distributions.BetaWithSoftplusAB.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.