tf.contrib.distributions.Beta.__init__()

tf.contrib.distributions.Beta.__init__(a, b, validate_args=False, allow_nan_stats=True, name='Beta') Initialize a batch of Beta distributions. Args: a: Positive floating point tensor with shape broadcastable to [N1,..., Nm] m >= 0. Defines this as a batch of N1 x ... x Nm different Beta distributions. This also defines the dtype of the distribution. b: Positive floating point tensor with shape broadcastable to [N1,..., Nm] m >= 0. Defines this as a batch of N1 x ... x Nm different Beta

tf.contrib.distributions.BetaWithSoftplusAB

class tf.contrib.distributions.BetaWithSoftplusAB Beta with softplus transform on a and b.

tf.contrib.distributions.Beta.variance()

tf.contrib.distributions.Beta.variance(name='variance') Variance.

tf.contrib.distributions.Beta.validate_args

tf.contrib.distributions.Beta.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.Beta.survival_function()

tf.contrib.distributions.Beta.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Beta.std()

tf.contrib.distributions.Beta.std(name='std') Standard deviation.

tf.contrib.distributions.Beta.sample_n()

tf.contrib.distributions.Beta.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Beta.sample()

tf.contrib.distributions.Beta.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Beta.prob()

tf.contrib.distributions.Beta.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from Beta: Note that the argument x must be a non-negative floating point tensor whose shape can be broadcast with self.a and self.b. For fixed leading dimensions, the last dimension represents counts for the corresponding Beta distribution in self.a and self.b. x is only legal if 0 < x < 1. Args: value: float or double Tensor. name: The name t

tf.contrib.distributions.Beta.pmf()

tf.contrib.distributions.Beta.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.