tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalFullTensor.dtype

tensorflow::SessionOptions::SessionOptions()

tensorflow::SessionOptions::SessionOptions()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.__init__()

tf.contrib.learn.monitors.RunHookAdapterForMonitors.__init__(monitors)

tf.contrib.distributions.MultivariateNormalFull.entropy()

tf.contrib.distributions.MultivariateNormalFull.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.distribution

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.dtype

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.Chi2.sample()

tf.contrib.distributions.Chi2.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.errors.DataLossError

class tf.errors.DataLossError Raised when unrecoverable data loss or corruption is encountered. For example, this may be raised by running a tf.WholeFileReader.read() operation, if the file is truncated while it is being read.

tf.contrib.distributions.Gamma.variance()

tf.contrib.distributions.Gamma.variance(name='variance') Variance.

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value()

tf.contrib.bayesflow.stochastic_tensor.TransformedDistributionTensor.value(name='value')