tf.sparse_merge()

tf.sparse_merge(sp_ids, sp_values, vocab_size, name=None, already_sorted=False) Combines a batch of feature ids and values into a single SparseTensor. The most common use case for this function occurs when feature ids and their corresponding values are stored in Example protos on disk. parse_example will return a batch of ids and a batch of values, and this function joins them into a single logical SparseTensor for use in functions such as sparse_tensor_dense_matmul, sparse_to_dense, etc. The

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor

class tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor ExponentialTensor is a StochasticTensor backed by the distribution Exponential.

tf.contrib.learn.DNNClassifier.model_dir

tf.contrib.learn.DNNClassifier.model_dir

tf.contrib.distributions.Gamma.validate_args

tf.contrib.distributions.Gamma.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.QueueBase.close()

tf.QueueBase.close(cancel_pending_enqueues=False, name=None) Closes this queue. This operation signals that no more elements will be enqueued in the given queue. Subsequent enqueue and enqueue_many operations will fail. Subsequent dequeue and dequeue_many operations will continue to succeed if sufficient elements remain in the queue. Subsequent dequeue and dequeue_many operations that would block will fail immediately. If cancel_pending_enqueues is True, all pending requests will also be cance

tf.contrib.distributions.MultivariateNormalFull.param_shapes()

tf.contrib.distributions.MultivariateNormalFull.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.graph_editor.SubGraphView.remap_outputs_make_unique()

tf.contrib.graph_editor.SubGraphView.remap_outputs_make_unique() Remap the outputs so that all the tensors appears only once.

tf.contrib.framework.local_variable()

tf.contrib.framework.local_variable(initial_value, validate_shape=True, name=None) Create variable and add it to GraphKeys.LOCAL_VARIABLES collection. Args: initial_value: See variables.Variable.__init__. validate_shape: See variables.Variable.__init__. name: See variables.Variable.__init__. Returns: New variable.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.name

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.name Name prepended to all ops created by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value(name='value')