tf.nn.rnn_cell.BasicLSTMCell.output_size

tf.nn.rnn_cell.BasicLSTMCell.output_size

tf.contrib.distributions.Laplace.variance()

tf.contrib.distributions.Laplace.variance(name='variance') Variance.

tensorflow::Env::SleepForMicroseconds()

virtual void tensorflow::Env::SleepForMicroseconds(int64 micros)=0 Sleeps/delays the thread for the prescribed number of micro-seconds.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.loss(final_loss, name='Loss')

tensorflow::TensorShape::dim_sizes()

gtl::InlinedVector< int64, 4 > tensorflow::TensorShape::dim_sizes() const Returns sizes of all dimensions.

tf.contrib.distributions.WishartFull.validate_args

tf.contrib.distributions.WishartFull.validate_args Python boolean indicated possibly expensive checks are enabled.

tensorflow::Tensor::scalar()

TTypes< T >::Scalar tensorflow::Tensor::scalar() Return the Tensor data as a TensorMap of fixed size 1: TensorMap<TensorFixedSize<T, 1>>. Using scalar() allows the compiler to perform optimizations as the size of the tensor is known at compile time.

tf.contrib.distributions.Dirichlet.std()

tf.contrib.distributions.Dirichlet.std(name='std') Standard deviation.