tf.contrib.learn.read_batch_record_features()

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples') Reads TFRecord, queues, batches and parses Example proto. See more detailed description in read_examples. Args: file_pattern: List of files or pattern of file paths containing Example records. See tf.gfile.Glob for pattern rules. batch_size: An int or scalar Tensor specifying th

tf.image.grayscale_to_rgb()

tf.image.grayscale_to_rgb(images, name=None) Converts one or more images from Grayscale to RGB. Outputs a tensor of the same DType and rank as images. The size of the last dimension of the output is 3, containing the RGB value of the pixels. Args: images: The Grayscale tensor to convert. Last dimension must be size 1. name: A name for the operation (optional). Returns: The converted grayscale image(s).

tf.contrib.distributions.Bernoulli.dtype

tf.contrib.distributions.Bernoulli.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.TransformedDistribution.pdf()

tf.contrib.distributions.TransformedDistribution.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.learn.DNNRegressor.evaluate()

tf.contrib.learn.DNNRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See Evaluable. Raises: ValueError: If at least one of x or y is provided, and at least one of input_fn or feed_fn is provided. Or if metrics is not None or dict.

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.NormalWithSoftplusSigmaTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.graph

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.graph

tf.contrib.distributions.Laplace.log_pmf()

tf.contrib.distributions.Laplace.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.DirichletMultinomial.alpha_sum

tf.contrib.distributions.DirichletMultinomial.alpha_sum Summation of alpha parameter.

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin()

tf.contrib.learn.monitors.ValidationMonitor.every_n_step_begin(step) Callback before every n'th step begins. Args: step: int, the current value of the global step. Returns: A list of tensors that will be evaluated at this step.