tf.contrib.learn.Estimator.__repr__()

tf.contrib.learn.Estimator.__repr__()

tf.fft2d()

tf.fft2d(input, name=None) Compute the 2-dimensional discrete Fourier Transform over the inner-most 2 dimensions of input. Args: input: A Tensor of type complex64. A complex64 tensor. name: A name for the operation (optional). Returns: A Tensor of type complex64. A complex64 tensor of the same shape as input. The inner-most 2 dimensions of input are replaced with their 2D Fourier Transform.

tf.nn.rnn_cell.DropoutWrapper

class tf.nn.rnn_cell.DropoutWrapper Operator adding dropout to inputs and outputs of the given cell.

tf.contrib.training.SequenceQueueingStateSaver

class tf.contrib.training.SequenceQueueingStateSaver SequenceQueueingStateSaver provides access to stateful values from input. This class is meant to be used instead of, e.g., a Queue, for splitting variable-length sequence inputs into segments of sequences with fixed length and batching them into mini-batches. It maintains contexts and state for a sequence across the segments. It can be used in conjunction with a QueueRunner (see the example below). The SequenceQueueingStateSaver (SQSS) accep

tf.contrib.distributions.Dirichlet.log_prob()

tf.contrib.distributions.Dirichlet.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from Dirichlet: Note that the input must be a non-negative tensor with dtype dtype and whose shape can be broadcast with self.alpha. For fixed leading dimensions, the last dimension represents counts for the corresponding Dirichlet distribution in self.alpha. x is only legal if it sums up to one. Args: value: float or double Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.mu

tf.contrib.distributions.MultivariateNormalCholesky.mu

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagWithSoftplusStDevTensor.mean(name='mean')

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor

class tf.contrib.bayesflow.stochastic_tensor.StochasticTensor StochasticTensor is a BaseStochasticTensor backed by a distribution.

tf.errors.UnknownError

class tf.errors.UnknownError Unknown error. An example of where this error may be returned is if a Status value received from another address space belongs to an error-space that is not known to this address space. Also errors raised by APIs that do not return enough error information may be converted to this error.

tf.nn.rnn_cell.GRUCell.output_size

tf.nn.rnn_cell.GRUCell.output_size