tf.contrib.distributions.MultivariateNormalDiag.pdf()

tf.contrib.distributions.MultivariateNormalDiag.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.name

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor.distribution

tf.contrib.distributions.MultivariateNormalDiag.param_static_shapes()

tf.contrib.distributions.MultivariateNormalDiag.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.DirichletMultinomial.log_prob()

tf.contrib.distributions.DirichletMultinomial.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from DirichletMultinomial: For each batch of counts [n_1,...,n_k], P[counts] is the probability that after sampling n draws from this Dirichlet Multinomial distribution, the number of draws falling in class j is n_j. Note that different sequences of draws can result in the same counts, thus the probability includes a combina

tf.contrib.distributions.MultivariateNormalFull.prob()

tf.contrib.distributions.MultivariateNormalFull.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape

tf.contrib.learn.read_batch_record_features()

tf.contrib.learn.read_batch_record_features(file_pattern, batch_size, features, randomize_input=True, num_epochs=None, queue_capacity=10000, reader_num_threads=1, parser_num_threads=1, name='dequeue_record_examples') Reads TFRecord, queues, batches and parses Example proto. See more detailed description in read_examples. Args: file_pattern: List of files or pattern of file paths containing Example records. See tf.gfile.Glob for pattern rules. batch_size: An int or scalar Tensor specifying th

tf.contrib.distributions.Categorical.pdf()

tf.contrib.distributions.Categorical.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.Categorical.log_survival_function()

tf.contrib.distributions.Categorical.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.loss(final_loss, name='Loss')