tf.contrib.learn.read_batch_examples()

tf.contrib.learn.read_batch_examples(file_pattern, batch_size, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, num_threads=1, read_batch_size=1, parse_fn=None, name=None) Adds operations to read, queue, batch Example protos. Given file pattern (or list of files), will setup a queue for file names, read Example proto using provided reader, use batch queue to create batches of examples of size batch_size. All queue runners are added to the queue runners collection, and may b

tf.contrib.distributions.MultivariateNormalCholesky.__init__()

tf.contrib.distributions.MultivariateNormalCholesky.__init__(mu, chol, validate_args=False, allow_nan_stats=True, name='MultivariateNormalCholesky') Multivariate Normal distributions on R^k. User must provide means mu and chol which holds the (batch) Cholesky factors, such that the covariance of each batch member is chol chol^T. Args: mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k], b >= 0. chol: (N+2)-D Tensor with same dtype as mu and shape [N1,...,Nb, k, k]. The upper trian

tf.contrib.learn.read_batch_features()

tf.contrib.learn.read_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, feature_queue_capacity=100, reader_num_threads=1, parser_num_threads=1, parse_fn=None, name=None) Adds operations to read, queue, batch and parse Example protos. Given file pattern (or list of files), will setup a queue for file names, read Example proto using provided reader, use batch queue to create batches of examples of size batch_size and parse exa

tf.contrib.learn.monitors.ExportMonitor.exports_to_keep

tf.contrib.learn.monitors.ExportMonitor.exports_to_keep

tf.contrib.distributions.BernoulliWithSigmoidP.mean()

tf.contrib.distributions.BernoulliWithSigmoidP.mean(name='mean') Mean.

tf.contrib.distributions.Categorical.num_classes

tf.contrib.distributions.Categorical.num_classes Scalar int32 tensor: the number of classes.

tensorflow::Tensor::flat_outer_dims()

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::flat_outer_dims() const

tf.contrib.distributions.WishartFull.scale()

tf.contrib.distributions.WishartFull.scale() Wishart distribution scale matrix.

tf.contrib.distributions.Gamma.get_batch_shape()

tf.contrib.distributions.Gamma.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.mean(name='mean')