tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.graph

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor

class tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor WishartCholeskyTensor is a StochasticTensor backed by the distribution WishartCholesky.

tf.contrib.bayesflow.stochastic_tensor.value_type()

tf.contrib.bayesflow.stochastic_tensor.value_type(dist_value_type) Creates a value type context for any StochasticTensor created within. Typical usage: with sg.value_type(sg.MeanValue(stop_gradients=True)): dt = sg.DistributionTensor(distributions.Normal, mu=mu, sigma=sigma) In the example above, dt.value() (or equivalently, tf.identity(dt)) will be the mean value of the Normal distribution, i.e., mu (possibly broadcasted to the shape of sigma). Furthermore, because the MeanValue was marked

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.clone(name=None, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value()

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.name

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.name