tf.contrib.distributions.Exponential.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.
tf.contrib.bayesflow.stochastic_tensor.WishartCholeskyTensor.distribution
tf.contrib.bayesflow.stochastic_tensor.InverseGammaWithSoftplusAlphaBetaTensor.mean(name='mean')
tf.contrib.learn.monitors.StopAtStep.step_begin(step)
tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.loss(final_loss, name='Loss')
tf.contrib.bayesflow.stochastic_tensor.WishartFullTensor.loss(final_loss, name='Loss')
tf.contrib.rnn.CoupledInputForgetGateLSTMCell.output_size
tf.contrib.rnn.LSTMBlockCell.output_size
tf.contrib.learn.DNNClassifier.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See evaluable.Evaluable.
Page 269 of 319