tf.contrib.training.stratified_sample(tensors, labels, target_probs, batch_size, init_probs=None, enqueue_many=False, queue_capacity=16, threads_per_queue=1, name=None)
Stochastically creates batches based on per-class probabilities.
This method discards examples. Internally, it creates one queue to amortize the cost of disk reads, and one queue to hold the properly-proportioned batch. See stratified_sample_unknown_dist for a function that performs stratified sampling with one queue per class