tf.contrib.distributions.Laplace.event_shape()

tf.contrib.distributions.Laplace.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.framework.variable()

tf.contrib.framework.variable(*args, **kwargs) Gets an existing variable with these parameters or creates a new one. Args: name: the name of the new or existing variable. shape: shape of the new or existing variable. dtype: type of the new or existing variable (defaults to DT_FLOAT). initializer: initializer for the variable if one is created. regularizer: a (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection GraphK

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name

tf.contrib.distributions.ExponentialWithSoftplusLam.sample()

tf.contrib.distributions.ExponentialWithSoftplusLam.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Chi2.get_batch_shape()

tf.contrib.distributions.Chi2.get_batch_shape() Shape of a single sample from a single event index as a TensorShape. Same meaning as batch_shape. May be only partially defined. Returns: batch_shape: TensorShape, possibly unknown.

tf.ReaderBase.reader_ref

tf.ReaderBase.reader_ref Op that implements the reader.

tf.contrib.layers.one_hot_encoding()

tf.contrib.layers.one_hot_encoding(*args, **kwargs) Transform numeric labels into onehot_labels using tf.one_hot. Args: labels: [batch_size] target labels. num_classes: total number of classes. on_value: A scalar defining the on-value. off_value: A scalar defining the off-value. outputs_collections: collection to add the outputs. scope: Optional scope for name_scope. Returns: one hot encoding of the labels.

tf.contrib.distributions.Normal.__init__()

tf.contrib.distributions.Normal.__init__(mu, sigma, validate_args=False, allow_nan_stats=True, name='Normal') Construct Normal distributions with mean and stddev mu and sigma. The parameters mu and sigma must be shaped in a way that supports broadcasting (e.g. mu + sigma is a valid operation). Args: mu: Floating point tensor, the means of the distribution(s). sigma: Floating point tensor, the stddevs of the distribution(s). sigma must contain only positive values. validate_args: Boolean, de

tf.contrib.learn.TensorFlowRNNClassifier.export()

tf.contrib.learn.TensorFlowRNNClassifier.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be remove

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.variance()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.variance(name='variance') Variance.