tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.pushed_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.popped_above(unused_value_type)
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.n
tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue.stop_gradient
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value_type
class tf.contrib.bayesflow.stochastic_tensor.SampleAndReshapeValue Ask the StochasticTensor for n samples and reshape the result. Sampling from a StochasticTensor increases the rank of the value by 1 (because each sample represents a new outer dimension). This ValueType requests n samples from StochasticTensors run within its context that the outer two dimensions are reshaped to intermix the samples with the outermost (usually batch) dimension. Example: # mu and sigma are both shaped (2, 3) mu
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.value(name='value')
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.__init__(name=None, dist_value_type=None, loss_fn=score_function, **dist_args)
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.graph
tf.contrib.bayesflow.stochastic_tensor.QuantizedDistributionTensor.mean(name='mean')
Page 274 of 319