tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_pmf()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tensorflow::SessionOptions::env

Env* tensorflow::SessionOptions::env The environment to use.

tf.contrib.distributions.BetaWithSoftplusAB.mode()

tf.contrib.distributions.BetaWithSoftplusAB.mode(name='mode') Mode. Additional documentation from Beta: Note that the mode for the Beta distribution is only defined when a > 1, b > 1. This returns the mode when a > 1 and b > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.Multinomial.log_pmf()

tf.contrib.distributions.Multinomial.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.Chi2WithAbsDfTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.LaplaceWithSoftplusScaleTensor.value_type

tf.contrib.distributions.BetaWithSoftplusAB.std()

tf.contrib.distributions.BetaWithSoftplusAB.std(name='std') Standard deviation.

tf.contrib.learn.DNNClassifier

class tf.contrib.learn.DNNClassifier A classifier for TensorFlow DNN models. Example: education = sparse_column_with_hash_bucket(column_name="education", hash_bucket_size=1000) occupation = sparse_column_with_hash_bucket(column_name="occupation", hash_bucket_size=1000) education_emb = embedding_column(sparse_id_column=education, dimension=16, combiner="sum") occupation_emb =

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mean()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.mean(name='mean') Mean.

tf.contrib.distributions.Chi2WithAbsDf.allow_nan_stats

tf.contrib.distributions.Chi2WithAbsDf.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df =