tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.__init__()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.__init__(dist_cls, value, name=None, **dist_args) Construct an ObservedStochasticTensor. ObservedStochasticTensor will instantiate a distribution from dist_cls and dist_args but use the provided value instead of sampling from the distribution. The provided value argument must be appropriately shaped to have come from the constructed distribution. Args: dist_cls: a Distribution class. value: a Tensor containing the observed value

tf.contrib.bayesflow.stochastic_tensor.PoissonTensor

class tf.contrib.bayesflow.stochastic_tensor.PoissonTensor PoissonTensor is a StochasticTensor backed by the distribution Poisson.

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.value(name='value')

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.graph

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.graph

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.loss(final_loss, name=None)

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.ObservedStochasticTensor.mean(name='mean')