tf.contrib.learn.monitors.ExportMonitor.export_dir

tf.contrib.learn.monitors.ExportMonitor.export_dir

tensorflow::TensorShape::AsEigenDSizes()

Eigen::DSizes< Eigen::DenseIndex, NDIMS > tensorflow::TensorShape::AsEigenDSizes() const Fill *dsizes from *this.

tf.nn.rnn_cell.LSTMStateTuple

class tf.nn.rnn_cell.LSTMStateTuple Tuple used by LSTM Cells for state_size, zero_state, and output state. Stores two elements: (c, h), in that order. Only used when state_is_tuple=True.

tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor

class tf.contrib.bayesflow.stochastic_tensor.MultinomialTensor MultinomialTensor is a StochasticTensor backed by the distribution Multinomial.

tf.nn.rnn_cell.InputProjectionWrapper.state_size

tf.nn.rnn_cell.InputProjectionWrapper.state_size

tensorflow::Tensor::operator=()

Tensor& tensorflow::Tensor::operator=(const Tensor &other) Assign operator. This tensor shares other's underlying storage.

tf.contrib.rnn.GRUBlockCell.output_size

tf.contrib.rnn.GRUBlockCell.output_size

tf.FixedLenSequenceFeature.__getnewargs__()

tf.FixedLenSequenceFeature.__getnewargs__() Return self as a plain tuple. Used by copy and pickle.

tf.contrib.distributions.WishartCholesky

class tf.contrib.distributions.WishartCholesky The matrix Wishart distribution on positive definite matrices. This distribution is defined by a scalar degrees of freedom df and a lower, triangular Cholesky factor which characterizes the scale matrix. Using WishartCholesky is a constant-time improvement over WishartFull. It saves an O(nbk^3) operation, i.e., a matrix-product operation for sampling and a Cholesky factorization in log_prob. For most use-cases it often saves another O(nbk^3) opera

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.state_size

tf.contrib.rnn.CoupledInputForgetGateLSTMCell.state_size