tf.contrib.distributions.Uniform.event_shape()

tf.contrib.distributions.Uniform.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.Binomial.mean()

tf.contrib.distributions.Binomial.mean(name='mean') Mean.

tf.contrib.distributions.NormalWithSoftplusSigma.pdf()

tf.contrib.distributions.NormalWithSoftplusSigma.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.TransformedDistribution.get_event_shape()

tf.contrib.distributions.TransformedDistribution.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Multinomial.variance()

tf.contrib.distributions.Multinomial.variance(name='variance') Variance.

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.distribution

tf.contrib.learn.monitors.CheckpointSaver.post_step()

tf.contrib.learn.monitors.CheckpointSaver.post_step(step, session)

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value()

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.value(name='value')

tf.contrib.distributions.StudentT.dtype

tf.contrib.distributions.StudentT.dtype The DType of Tensors handled by this Distribution.

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.name

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.name