tf.contrib.bayesflow.entropy.entropy_shannon(p, z=None, n=None, seed=None, form=None, name='entropy_shannon')
Monte Carlo or deterministic computation of Shannon's entropy.
Depending on the kwarg form, this Op returns either the analytic entropy of the distribution p, or the sampled entropy:
-n^{-1} sum_{i=1}^n p.log_prob(z_i), where z_i ~ p,
\approx - E_p[ Log[p(Z)] ]
= Entropy[p]
User supplies either Tensor of samples z, or number of samples to draw n
Args:
p: tf.contrib.distribut