tf.errors.DeadlineExceededError

class tf.errors.DeadlineExceededError Raised when a deadline expires before an operation could complete. This exception is not currently used.

tf.errors.AlreadyExistsError

class tf.errors.AlreadyExistsError Raised when an entity that we attempted to create already exists. For example, running an operation that saves a file (e.g. tf.train.Saver.save()) could potentially raise this exception if an explicit filename for an existing file was passed.

tf.contrib.distributions.DirichletMultinomial.log_pdf()

tf.contrib.distributions.DirichletMultinomial.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.learn.LinearClassifier.get_estimator()

tf.contrib.learn.LinearClassifier.get_estimator()

tf.contrib.bayesflow.entropy.elbo_ratio()

tf.contrib.bayesflow.entropy.elbo_ratio(log_p, q, z=None, n=None, seed=None, form=None, name='elbo_ratio') Estimate of the ratio appearing in the ELBO and KL divergence. With p(z) := exp{log_p(z)}, this Op returns an approximation of E_q[ Log[p(Z) / q(Z)] ] The term E_q[ Log[p(Z)] ] is always computed as a sample mean. The term E_q[ Log[q(z)] ] can be computed with samples, or an exact formula if q.entropy() is defined. This is controlled with the kwarg form. This log-ratio appears in differe

tf.contrib.distributions.LaplaceWithSoftplusScale.scale

tf.contrib.distributions.LaplaceWithSoftplusScale.scale Distribution parameter for scale.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalCholeskyTensor.mean(name='mean')

tf.contrib.distributions.Categorical

class tf.contrib.distributions.Categorical Categorical distribution. The categorical distribution is parameterized by the log-probabilities of a set of classes.

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor.entropy(name='entropy')

tf.errors.UnimplementedError

class tf.errors.UnimplementedError Raised when an operation has not been implemented. Some operations may raise this error when passed otherwise-valid arguments that it does not currently support. For example, running the tf.nn.max_pool() operation would raise this error if pooling was requested on the batch dimension, because this is not yet supported.