tf.contrib.distributions.Gamma.__init__(alpha, beta, validate_args=False, allow_nan_stats=True, name='Gamma')
Construct Gamma distributions with parameters alpha
and beta
.
The parameters alpha
and beta
must be shaped in a way that supports broadcasting (e.g. alpha + beta
is a valid operation).
Args:
-
alpha
: Floating point tensor, the shape params of the distribution(s). alpha must contain only positive values. -
beta
: Floating point tensor, the inverse scale params of the distribution(s). beta must contain only positive values. -
validate_args
:Boolean
, defaultFalse
. Whether to assert thata > 0
,b > 0
, and thatx > 0
in the methodsprob(x)
andlog_prob(x)
. Ifvalidate_args
isFalse
and the inputs are invalid, correct behavior is not guaranteed. -
allow_nan_stats
:Boolean
, defaultTrue
. IfFalse
, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. IfTrue
, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. -
name
: The name to prepend to all ops created by this distribution.
Raises:
-
TypeError
: ifalpha
andbeta
are different dtypes.
Please login to continue.