tf.contrib.layers.summarize_activation()

tf.contrib.layers.summarize_activation(op) Summarize an activation. This applies the given activation and adds useful summaries specific to the activation. Args: op: The tensor to summarize (assumed to be a layer activation). Returns: The summary op created to summarize op.

tf.contrib.distributions.Categorical.event_shape()

tf.contrib.distributions.Categorical.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.learn.TensorFlowRNNRegressor.__repr__()

tf.contrib.learn.TensorFlowRNNRegressor.__repr__()

tf.SparseTensor.__str__()

tf.SparseTensor.__str__()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.entropy()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.distributions.WishartCholesky.mean_log_det()

tf.contrib.distributions.WishartCholesky.mean_log_det(name='mean_log_det') Computes E[log(det(X))] under this Wishart distribution.

tf.contrib.distributions.WishartFull.prob()

tf.contrib.distributions.WishartFull.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.beta

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.beta Inverse scale parameter.

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.BernoulliTensor.value_type

tensorflow::Tensor::NumElements()

int64 tensorflow::Tensor::NumElements() const Convenience accessor for the tensor shape.