tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.batch_shape()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.image.decode_png()

tf.image.decode_png(contents, channels=None, dtype=None, name=None) Decode a PNG-encoded image to a uint8 or uint16 tensor. The attr channels indicates the desired number of color channels for the decoded image. Accepted values are: 0: Use the number of channels in the PNG-encoded image. 1: output a grayscale image. 3: output an RGB image. 4: output an RGBA image. If needed, the PNG-encoded image is transformed to match the requested number of color channels. Args: contents: A Tensor of typ

tf.contrib.learn.run_feeds()

tf.contrib.learn.run_feeds(*args, **kwargs) See run_feeds_iter(). Returns a list instead of an iterator.

tf.contrib.distributions.QuantizedDistribution.log_cdf()

tf.contrib.distributions.QuantizedDistribution.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Additional documentation from QuantizedDistribution: For whole numbers y, cdf(y) := P[Y <= y] = 1, if y >

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.prob()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.Bernoulli.param_shapes()

tf.contrib.distributions.Bernoulli.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_prob()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Returns: log_

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_survival_function()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: val

tf.contrib.distributions.MultivariateNormalFull.sample()

tf.contrib.distributions.MultivariateNormalFull.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Binomial.__init__()

tf.contrib.distributions.Binomial.__init__(n, logits=None, p=None, validate_args=False, allow_nan_stats=True, name='Binomial') Initialize a batch of Binomial distributions. Args: n: Non-negative floating point tensor with shape broadcastable to [N1,..., Nm] with m >= 0 and the same dtype as p or logits. Defines this as a batch of N1 x ... x Nm different Binomial distributions. Its components should be equal to integer values. logits: Floating point tensor representing the log-odds of a po