tf.contrib.distributions.StudentT.log_pmf()

tf.contrib.distributions.StudentT.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.sparse_split()

tf.sparse_split(split_dim, num_split, sp_input, name=None) Split a SparseTensor into num_split tensors along split_dim. If the sp_input.shape[split_dim] is not an integer multiple of num_split each slice starting from 0:shape[split_dim] % num_split gets extra one dimension. For example, if split_dim = 1 and num_split = 2 and the input is: input_tensor = shape = [2, 7] [ a d e ] [b c ] Graphically the output tensors are: output_tensor[0] = [ a ] [b c ] output_tensor[1] = [

tf.contrib.distributions.Normal.mode()

tf.contrib.distributions.Normal.mode(name='mode') Mode.

tf.contrib.distributions.Bernoulli.param_static_shapes()

tf.contrib.distributions.Bernoulli.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss()

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.loss(final_loss, name='Loss')

tf.contrib.distributions.WishartFull.entropy()

tf.contrib.distributions.WishartFull.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.clone(name=None, **dist_args)

tf.SparseTensor.__mul__()

tf.SparseTensor.__mul__(sp_x, y) Component-wise multiplies a SparseTensor by a dense Tensor. The output locations corresponding to the implicitly zero elements in the sparse tensor will be zero (i.e., will not take up storage space), regardless of the contents of the dense tensor (even if it's +/-INF and that INF*0 == NaN). Limitation: this Op only broadcasts the dense side to the sparse side, but not the other direction. Args: sp_indices: A Tensor of type int64. 2-D. N x R matrix with the in

tf.contrib.distributions.Laplace.event_shape()

tf.contrib.distributions.Laplace.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.framework.variable()

tf.contrib.framework.variable(*args, **kwargs) Gets an existing variable with these parameters or creates a new one. Args: name: the name of the new or existing variable. shape: shape of the new or existing variable. dtype: type of the new or existing variable (defaults to DT_FLOAT). initializer: initializer for the variable if one is created. regularizer: a (Tensor -> Tensor or None) function; the result of applying it on a newly created variable will be added to the collection GraphK