tensorflow::Status::operator=()

void tensorflow::Status::operator=(const Status &s)

tf.contrib.distributions.Categorical.logits

tf.contrib.distributions.Categorical.logits

tensorflow::Env::GetRegisteredFileSystemSchemes()

Status tensorflow::Env::GetRegisteredFileSystemSchemes(std::vector< string > *schemes) Returns the file system schemes registered for this Env .

tensorflow::PartialTensorShape::IsValidShape()

Status tensorflow::PartialTensorShape::IsValidShape(const TensorShapeProto &proto) Returns OK iff proto is a valid tensor shape, and a descriptive error status otherwise.

tf.contrib.learn.monitors.ValidationMonitor.best_step

tf.contrib.learn.monitors.ValidationMonitor.best_step Returns the step at which the best early stopping metric was found.

tf.contrib.learn.LinearClassifier.predict()

tf.contrib.learn.LinearClassifier.predict(x=None, input_fn=None, batch_size=None, as_iterable=False) Runs inference to determine the predicted class.

tf.contrib.graph_editor.matcher.__call__()

tf.contrib.graph_editor.matcher.__call__(op) Evaluate if the op matches or not.

tf.contrib.learn.TensorFlowRNNRegressor.__init__()

tf.contrib.learn.TensorFlowRNNRegressor.__init__(rnn_size, cell_type='gru', num_layers=1, input_op_fn=null_input_op_fn, initial_state=None, bidirectional=False, sequence_length=None, attn_length=None, attn_size=None, attn_vec_size=None, n_classes=0, batch_size=32, steps=50, optimizer='Adagrad', learning_rate=0.1, clip_gradients=5.0, continue_training=False, config=None, verbose=1) Initializes a TensorFlowRNNRegressor instance. Args: rnn_size: The size for rnn cell, e.g. size of your word embe

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.DirichletMultinomialTensor.mean(name='mean')

tf.FixedLenFeature.default_value

tf.FixedLenFeature.default_value Alias for field number 2