tf.contrib.learn.monitors.PrintTensor

class tf.contrib.learn.monitors.PrintTensor Prints given tensors every N steps. This is an EveryN monitor and has consistent semantic for every_n and first_n. The tensors will be printed to the log, with INFO severity.

tf.contrib.distributions.WishartCholesky.param_static_shapes()

tf.contrib.distributions.WishartCholesky.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.Beta.allow_nan_stats

tf.contrib.distributions.Beta.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean for Student's T for df = 1 is unde

tf.contrib.distributions.QuantizedDistribution.variance()

tf.contrib.distributions.QuantizedDistribution.variance(name='variance') Variance.

tf.contrib.learn.BaseEstimator

class tf.contrib.learn.BaseEstimator Abstract BaseEstimator class to train and evaluate TensorFlow models. Concrete implementation of this class should provide the following functions: _get_train_ops _get_eval_ops _get_predict_ops Estimator implemented below is a good example of how to use this class.

tf.contrib.distributions.InverseGamma.cdf()

tf.contrib.distributions.InverseGamma.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.prob()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Additional documentation from _MultivariateNormalOperatorPD: x is a batch vector with compatible shape if x is a Tensor whose shape can be broadcast up to either: self.batch_shape + self.event_shape or [M1,...,Mm] + self.batch_shape + self.event_shape Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor o

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample_n()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.Beta.log_survival_function()

tf.contrib.distributions.Beta.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double Tensor

tf.contrib.distributions.Uniform.prob()

tf.contrib.distributions.Uniform.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.