tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.LaplaceTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.entropy(name='entropy')

tf.VarLenFeature.__repr__()

tf.VarLenFeature.__repr__() Return a nicely formatted representation string

tf.contrib.distributions.Multinomial.batch_shape()

tf.contrib.distributions.Multinomial.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.UniformTensor.distribution

tf.contrib.framework.assert_or_get_global_step()

tf.contrib.framework.assert_or_get_global_step(graph=None, global_step_tensor=None) Verifies that a global step tensor is valid or gets one if None is given. If global_step_tensor is not None, check that it is a valid global step tensor (using assert_global_step). Otherwise find a global step tensor using get_global_step and return it. Args: graph: The graph to find the global step tensor for. global_step_tensor: The tensor to check for suitability as a global step. If None is given (the def

tf.contrib.distributions.Poisson.__init__()

tf.contrib.distributions.Poisson.__init__(lam, validate_args=False, allow_nan_stats=True, name='Poisson') Construct Poisson distributions. Args: lam: Floating point tensor, the rate parameter of the distribution(s). lam must be positive. validate_args: Boolean, default False. Whether to assert that lam > 0 as well as inputs to pmf computations are non-negative integers. If validate_args is False, then pmf computations might return NaN, but can be evaluated at any real value. allow_nan_st

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names()

tf.contrib.learn.TensorFlowRNNRegressor.get_variable_names() Returns list of all variable names in this model. Returns: List of names.

tf.contrib.graph_editor.make_list_of_t()

tf.contrib.graph_editor.make_list_of_t(ts, check_graph=True, allow_graph=True, ignore_ops=False) Convert ts to a list of tf.Tensor. Args: ts: can be an iterable of tf.Tensor, a tf.Graph or a single tensor. check_graph: if True check if all the tensors belong to the same graph. allow_graph: if False a tf.Graph cannot be converted. ignore_ops: if True, silently ignore tf.Operation. Returns: A newly created list of tf.Tensor. Raises: TypeError: if ts cannot be converted to a list of tf.Ten

tf.SparseTensorValue.__repr__()

tf.SparseTensorValue.__repr__() Return a nicely formatted representation string