tf.contrib.distributions.MultivariateNormalFull.mode()

tf.contrib.distributions.MultivariateNormalFull.mode(name='mode') Mode.

tf.contrib.learn.monitors.LoggingTrainable.epoch_begin()

tf.contrib.learn.monitors.LoggingTrainable.epoch_begin(epoch) Begin epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've already begun an epoch, or epoch < 0.

tf.contrib.distributions.DirichletMultinomial.parameters

tf.contrib.distributions.DirichletMultinomial.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Categorical.mean()

tf.contrib.distributions.Categorical.mean(name='mean') Mean.

tf.contrib.distributions.Beta.validate_args

tf.contrib.distributions.Beta.validate_args Python boolean indicated possibly expensive checks are enabled.

tf.contrib.distributions.WishartFull.dimension

tf.contrib.distributions.WishartFull.dimension Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone(name=None, **dist_args)

tf.contrib.graph_editor.OpMatcher.control_input_ops()

tf.contrib.graph_editor.OpMatcher.control_input_ops(*args) Add input matches.