tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.distribution

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pdf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pmf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.Binomial.param_shapes()

tf.contrib.distributions.Binomial.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.BernoulliWithSigmoidP.q

tf.contrib.distributions.BernoulliWithSigmoidP.q 1-p.

tf.contrib.distributions.Mixture.param_shapes()

tf.contrib.distributions.Mixture.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.MultivariateNormalDiagPlusVDVTTensor.entropy(name='entropy')

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.GammaTensor.input_dict

tf.nn.rnn_cell.LSTMStateTuple.dtype

tf.nn.rnn_cell.LSTMStateTuple.dtype

tf.contrib.distributions.NormalWithSoftplusSigma.name

tf.contrib.distributions.NormalWithSoftplusSigma.name Name prepended to all ops created by this Distribution.