tf.contrib.graph_editor.reroute_b2a()

tf.contrib.graph_editor.reroute_b2a(sgv0, sgv1) Re-route the inputs and outputs of sgv1 to sgv0 (see _reroute).

tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor

class tf.contrib.bayesflow.stochastic_tensor.InverseGammaTensor InverseGammaTensor is a StochasticTensor backed by the distribution InverseGamma.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.allow_nan_stats Python boolean describing behavior when a stat is undefined. Stats return +/- infinity when it makes sense. E.g., the variance of a Cauchy distribution is infinity. However, sometimes the statistic is undefined, e.g., if a distribution's pdf does not achieve a maximum within the support of the distribution, the mode is undefined. If the mean is undefined, then by definition the variance is undefined. E.g. the mean

tf.nn.rnn_cell.DropoutWrapper.__init__()

tf.nn.rnn_cell.DropoutWrapper.__init__(cell, input_keep_prob=1.0, output_keep_prob=1.0, seed=None) Create a cell with added input and/or output dropout. Dropout is never used on the state. Args: cell: an RNNCell, a projection to output_size is added to it. input_keep_prob: unit Tensor or float between 0 and 1, input keep probability; if it is float and 1, no input dropout will be added. output_keep_prob: unit Tensor or float between 0 and 1, output keep probability; if it is float and 1, no

tf.nn.rnn_cell.OutputProjectionWrapper.zero_state()

tf.nn.rnn_cell.OutputProjectionWrapper.zero_state(batch_size, dtype) Return zero-filled state tensor(s). Args: batch_size: int, float, or unit Tensor representing the batch size. dtype: the data type to use for the state. Returns: If state_size is an int or TensorShape, then the return value is a N-D tensor of shape [batch_size x state_size] filled with zeros. If state_size is a nested list or tuple, then the return value is a nested list or tuple (of the same structure) of 2-D tensors wit

tf.ones()

tf.ones(shape, dtype=tf.float32, name=None) Creates a tensor with all elements set to 1. This operation returns a tensor of type dtype with shape shape and all elements set to 1. For example: tf.ones([2, 3], int32) ==> [[1, 1, 1], [1, 1, 1]] Args: shape: Either a list of integers, or a 1-D Tensor of type int32. dtype: The type of an element in the resulting Tensor. name: A name for the operation (optional). Returns: A Tensor with all elements set to 1.

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy()

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.entropy(name='entropy')

tf.contrib.graph_editor.SubGraphView.__exit__()

tf.contrib.graph_editor.SubGraphView.__exit__(exc_type, exc_value, traceback)

tf.floor()

tf.floor(x, name=None) Returns element-wise largest integer not greater than x. Args: x: A Tensor. Must be one of the following types: half, float32, float64. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.contrib.distributions.Multinomial.get_event_shape()

tf.contrib.distributions.Multinomial.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.