tensorflow::Tensor::flat()

TTypes<T>::Flat tensorflow::Tensor::flat() Return the tensor data as an Eigen::Tensor of the data type and a specified shape. These methods allow you to access the data with the dimensions and sizes of your choice. You do not need to know the number of dimensions of the Tensor to call them. However, they CHECK that the type matches and the dimensions requested creates an Eigen::Tensor with the same number of elements as the tensor. Example: Tensor my_ten(...built with Shape{planes: 4, ro

tensorflow::Tensor::~Tensor()

tensorflow::Tensor::Tensor() Creates a 1-dimensional, 0-element float tensor. The returned Tensor is not a scalar (shape {}), but is instead an empty one-dimensional Tensor (shape {0}, NumElements() == 0). Since it has no elements, it does not need to be assigned a value and is initialized by default ( IsInitialized() is true). If this is undesirable, consider creating a one-element scalar which does require initialization:

tf.contrib.learn.monitors.StepCounter.epoch_begin()

tf.contrib.learn.monitors.StepCounter.epoch_begin(epoch) Begin epoch. Args: epoch: int, the epoch number. Raises: ValueError: if we've already begun an epoch, or epoch < 0.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pmf()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.log_pmf()

tf.contrib.distributions.NormalWithSoftplusSigma.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf()

tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pdf()

tf.contrib.distributions.ExponentialWithSoftplusLam.log_pdf(value, name='log_pdf') Log probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.QueueBase.shapes

tf.QueueBase.shapes The list of shapes for each component of a queue element.

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.ExponentialTensor.value_type

tf.contrib.learn.read_batch_features()

tf.contrib.learn.read_batch_features(file_pattern, batch_size, features, reader, randomize_input=True, num_epochs=None, queue_capacity=10000, feature_queue_capacity=100, reader_num_threads=1, parser_num_threads=1, parse_fn=None, name=None) Adds operations to read, queue, batch and parse Example protos. Given file pattern (or list of files), will setup a queue for file names, read Example proto using provided reader, use batch queue to create batches of examples of size batch_size and parse exa