tf.contrib.distributions.WishartFull.dimension

tf.contrib.distributions.WishartFull.dimension Dimension of underlying vector space. The p in R^(p*p).

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.value_type

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.DirichletTensor.distribution

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone()

tf.contrib.bayesflow.stochastic_tensor.StudentTWithAbsDfSoftplusSigmaTensor.clone(name=None, **dist_args)

tf.contrib.distributions.WishartCholesky.cdf()

tf.contrib.distributions.WishartCholesky.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.graph_editor.OpMatcher.control_input_ops()

tf.contrib.graph_editor.OpMatcher.control_input_ops(*args) Add input matches.

tf.contrib.distributions.WishartCholesky.mode()

tf.contrib.distributions.WishartCholesky.mode(name='mode') Mode.

tf.contrib.learn.monitors.StopAtStep.run_on_all_workers

tf.contrib.learn.monitors.StopAtStep.run_on_all_workers

tf.contrib.distributions.Chi2WithAbsDf.mean()

tf.contrib.distributions.Chi2WithAbsDf.mean(name='mean') Mean.

tf.nn.rnn_cell.LSTMStateTuple.__new__()

tf.nn.rnn_cell.LSTMStateTuple.__new__(_cls, c, h) Create new instance of LSTMStateTuple(c, h)