tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.input_dict

tf.contrib.bayesflow.stochastic_tensor.BinomialTensor.input_dict

tf.contrib.graph_editor.matcher.input_ops()

tf.contrib.graph_editor.matcher.input_ops(*args) Add input matches.

tf.sub()

tf.sub(x, y, name=None) Returns x - y element-wise. NOTE: Sub supports broadcasting. More about broadcasting here Args: x: A Tensor. Must be one of the following types: half, float32, float64, int32, int64, complex64, complex128. y: A Tensor. Must have the same type as x. name: A name for the operation (optional). Returns: A Tensor. Has the same type as x.

tf.contrib.graph_editor.SubGraphView.__enter__()

tf.contrib.graph_editor.SubGraphView.__enter__() Allow Python context to minize the life time of a subgraph view. A subgraph view is meant to be a lightweight and transient object. A short lifetime will alleviate the "out-of-sync" issue mentioned earlier. For that reason, a SubGraphView instance can be used within a Python context. For example: from tensorflow.contrib import graph_editor as ge with ge.make_sgv(...) as sgv: print(sgv) Returns: Itself.

tf.FixedLenFeature.shape

tf.FixedLenFeature.shape Alias for field number 0

tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes()

tf.contrib.distributions.BernoulliWithSigmoidP.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalCholesky.cdf()

tf.contrib.distributions.MultivariateNormalCholesky.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__()

tf.contrib.bayesflow.stochastic_tensor.MeanValue.__init__(stop_gradient=False)

tf.contrib.rnn.LayerNormBasicLSTMCell.output_size

tf.contrib.rnn.LayerNormBasicLSTMCell.output_size

tf.contrib.learn.TensorFlowRNNRegressor.model_dir

tf.contrib.learn.TensorFlowRNNRegressor.model_dir