tf.image.pad_to_bounding_box()

tf.image.pad_to_bounding_box(image, offset_height, offset_width, target_height, target_width) Pad image with zeros to the specified height and width. Adds offset_height rows of zeros on top, offset_width columns of zeros on the left, and then pads the image on the bottom and right with zeros until it has dimensions target_height, target_width. This op does nothing if offset_* is zero and the image already has size target_height by target_width. Args: image: 3-D tensor with shape [height, widt

tf.where()

tf.where(input, name=None) Returns locations of true values in a boolean tensor. This operation returns the coordinates of true elements in input. The coordinates are returned in a 2-D tensor where the first dimension (rows) represents the number of true elements, and the second dimension (columns) represents the coordinates of the true elements. Keep in mind, the shape of the output tensor can vary depending on how many true values there are in input. Indices are output in row-major order. Fo

tf.contrib.learn.monitors.PrintTensor.step_begin()

tf.contrib.learn.monitors.PrintTensor.step_begin(step) Overrides BaseMonitor.step_begin. When overriding this method, you must call the super implementation. Args: step: int, the current value of the global step. Returns: A list, the result of every_n_step_begin, if that was called this step, or an empty list otherwise. Raises: ValueError: if called more than once during a step.

tf.image.adjust_saturation()

tf.image.adjust_saturation(image, saturation_factor, name=None) Adjust saturation of an RGB image. This is a convenience method that converts an RGB image to float representation, converts it to HSV, add an offset to the saturation channel, converts back to RGB and then back to the original data type. If several adjustments are chained it is advisable to minimize the number of redundant conversions. image is an RGB image. The image saturation is adjusted by converting the image to HSV and mult

tf.contrib.distributions.MultivariateNormalFull

class tf.contrib.distributions.MultivariateNormalFull The multivariate normal distribution on R^k. This distribution is defined by a 1-D mean mu and covariance matrix sigma. Evaluation of the pdf, determinant, and sampling are all O(k^3) operations.

tf.contrib.distributions.QuantizedDistribution.log_pmf()

tf.contrib.distributions.QuantizedDistribution.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.bayesflow.stochastic_tensor.SampleValue.__init__()

tf.contrib.bayesflow.stochastic_tensor.SampleValue.__init__(n=1, stop_gradient=False) Sample n times and concatenate along a new outer dimension. Args: n: A python integer or int32 tensor. The number of samples to take. stop_gradient: If True, StochasticTensors' values are wrapped in stop_gradient, to avoid backpropagation through.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.survival_function()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.Multinomial.mean()

tf.contrib.distributions.Multinomial.mean(name='mean') Mean.

tf.contrib.distributions.WishartFull.survival_function()

tf.contrib.distributions.WishartFull.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.