tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name

tf.contrib.bayesflow.stochastic_tensor.ExponentialWithSoftplusLamTensor.name

tf.contrib.distributions.ExponentialWithSoftplusLam.sample()

tf.contrib.distributions.ExponentialWithSoftplusLam.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.Chi2WithAbsDf.pdf()

tf.contrib.distributions.Chi2WithAbsDf.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.batch_shape()

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.MultivariateNormalCholesky.param_static_shapes()

tf.contrib.distributions.MultivariateNormalCholesky.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.learn.Estimator.export()

tf.contrib.learn.Estimator.export(*args, **kwargs) Exports inference graph into given dir. (deprecated arguments) SOME ARGUMENTS ARE DEPRECATED. They will be removed after 2016-09-23. Instructions for updating: The signature of the input_fn accepted by export is changing to be consistent with what's used by tf.Learn Estimator's train/evaluate. input_fn (and in most cases, input_feature_key) will become required args, and use_deprecated_input_fn will default to False and be removed altogether.

tf.contrib.metrics.streaming_mean_cosine_distance()

tf.contrib.metrics.streaming_mean_cosine_distance(predictions, labels, dim, weights=None, metrics_collections=None, updates_collections=None, name=None) Computes the cosine distance between the labels and predictions. The streaming_mean_cosine_distance function creates two local variables, total and count that are used to compute the average cosine distance between predictions and labels. This average is weighted by weights, and it is ultimately returned as mean_distance, which is an idempoten

tf.contrib.distributions.Multinomial.pdf()

tf.contrib.distributions.Multinomial.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.

tf.contrib.framework.convert_to_tensor_or_sparse_tensor()

tf.contrib.framework.convert_to_tensor_or_sparse_tensor(value, dtype=None, name=None, as_ref=False) Converts value to a SparseTensor or Tensor. Args: value: A SparseTensor, SparseTensorValue, or an object whose type has a registered Tensor conversion function. dtype: Optional element type for the returned tensor. If missing, the type is inferred from the type of value. name: Optional name to use if a new Tensor is created. as_ref: True if we want the result as a ref tensor. Only used if a

tf.TFRecordReader.num_work_units_completed()

tf.TFRecordReader.num_work_units_completed(name=None) Returns the number of work units this reader has finished processing. Args: name: A name for the operation (optional). Returns: An int64 Tensor.