tf.contrib.learn.monitors.ValidationMonitor.best_step

tf.contrib.learn.monitors.ValidationMonitor.best_step Returns the step at which the best early stopping metric was found.

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.StochasticTensor.name

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.StudentTTensor.dtype

tf.contrib.distributions.Dirichlet.event_shape()

tf.contrib.distributions.Dirichlet.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.graph_editor.matcher.__call__()

tf.contrib.graph_editor.matcher.__call__(op) Evaluate if the op matches or not.

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean()

tf.contrib.bayesflow.stochastic_tensor.BernoulliWithSigmoidPTensor.mean(name='mean')

tf.nn.rnn_cell.BasicLSTMCell.state_size

tf.nn.rnn_cell.BasicLSTMCell.state_size

tf.contrib.distributions.Categorical.get_event_shape()

tf.contrib.distributions.Categorical.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.framework.is_tensor()

tf.contrib.framework.is_tensor(x) Check for tensor types. Check whether an object is a tensor. Equivalent to isinstance(x, [tf.Tensor, tf.SparseTensor, tf.Variable]). Args: x: An python object to check. Returns: True if x is a tensor, False if not.

tf.contrib.learn.monitors.CaptureVariable.set_estimator()

tf.contrib.learn.monitors.CaptureVariable.set_estimator(estimator) A setter called automatically by the target estimator. If the estimator is locked, this method does nothing. Args: estimator: the estimator that this monitor monitors. Raises: ValueError: if the estimator is None.