tf.contrib.distributions.TransformedDistribution.is_reparameterized

tf.contrib.distributions.TransformedDistribution.is_reparameterized

tf.contrib.distributions.MultivariateNormalCholesky.__init__()

tf.contrib.distributions.MultivariateNormalCholesky.__init__(mu, chol, validate_args=False, allow_nan_stats=True, name='MultivariateNormalCholesky') Multivariate Normal distributions on R^k. User must provide means mu and chol which holds the (batch) Cholesky factors, such that the covariance of each batch member is chol chol^T. Args: mu: (N+1)-D floating point tensor with shape [N1,...,Nb, k], b >= 0. chol: (N+2)-D Tensor with same dtype as mu and shape [N1,...,Nb, k, k]. The upper trian

tf.contrib.framework.has_arg_scope()

tf.contrib.framework.has_arg_scope(func) Checks whether a func has been decorated with @add_arg_scope or not. Args: func: function to check. Returns: a boolean.

tf.contrib.learn.DNNRegressor.weights_

tf.contrib.learn.DNNRegressor.weights_

tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf()

tf.contrib.distributions.BernoulliWithSigmoidP.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.NormalWithSoftplusSigma.param_shapes()

tf.contrib.distributions.NormalWithSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor

tf.contrib.distributions.BernoulliWithSigmoidP.log_survival_function()

tf.contrib.distributions.BernoulliWithSigmoidP.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float

tf.contrib.distributions.Categorical.log_survival_function()

tf.contrib.distributions.Categorical.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: value: float or double

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample_n()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.sample_n(n, seed=None, name='sample_n') Generate n samples. Additional documentation from Gamma: See the documentation for tf.random_gamma for more details. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.