tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.batch_shape()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tensorflow::Session::Run()

virtual Status tensorflow::Session::Run(const std::vector< std::pair< string, Tensor > > &inputs, const std::vector< string > &output_tensor_names, const std::vector< string > &target_node_names, std::vector< Tensor > *outputs)=0 Runs the graph with the provided input tensors and fills outputs for the endpoints specified in output_tensor_names. Runs to but does not return Tensors for the nodes in target_node_names. The order of tensors in outputs will

tensorflow::RandomAccessFile

A file abstraction for randomly reading the contents of a file. Member Details tensorflow::RandomAccessFile::RandomAccessFile() tensorflow::RandomAccessFile::~RandomAccessFile() virtual Status tensorflow::RandomAccessFile::Read(uint64 offset, size_t n, StringPiece *result, char *scratch) const =0 Reads up to n bytes from the file starting at offset. scratch[0..n-1] may be written by this routine. Sets *result to the data that was read (including if fewer than n bytes were successfully read). Ma

tf.contrib.distributions.ExponentialWithSoftplusLam.param_static_shapes()

tf.contrib.distributions.ExponentialWithSoftplusLam.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.parameters

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.parameters Dictionary of parameters used by this Distribution.

tf.contrib.distributions.Gamma.log_cdf()

tf.contrib.distributions.Gamma.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape sample_shape(x) + self.ba

tf.contrib.distributions.WishartCholesky.sample_n()

tf.contrib.distributions.WishartCholesky.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.abs()

tf.abs(x, name=None) Computes the absolute value of a tensor. Given a tensor of real numbers x, this operation returns a tensor containing the absolute value of each element in x. For example, if x is an input element and y is an output element, this operation computes \(y = |x|\). See tf.complex_abs() to compute the absolute value of a complex number. Args: x: A Tensor or SparseTensor of type float32, float64, int32, or int64. name: A name for the operation (optional). Returns: A Tensor o

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_survival_function()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Args: val

tf.image.hsv_to_rgb()

tf.image.hsv_to_rgb(images, name=None) Convert one or more images from HSV to RGB. Outputs a tensor of the same shape as the images tensor, containing the RGB value of the pixels. The output is only well defined if the value in images are in [0,1]. See rgb_to_hsv for a description of the HSV encoding. Args: images: A Tensor. Must be one of the following types: float32, float64. 1-D or higher rank. HSV data to convert. Last dimension must be size 3. name: A name for the operation (optional).