tf.errors.AbortedError

class tf.errors.AbortedError The operation was aborted, typically due to a concurrent action. For example, running a queue.enqueue() operation may raise AbortedError if a queue.close() operation previously ran.

tf.contrib.framework.get_local_variables()

tf.contrib.framework.get_local_variables(scope=None, suffix=None) Gets the list of model variables, filtered by scope and/or suffix. Args: scope: an optional scope for filtering the variables to return. suffix: an optional suffix for filtering the variables to return. Returns: a list of variables in collection with scope and suffix.

tf.contrib.framework.get_variables_by_name()

tf.contrib.framework.get_variables_by_name(given_name, scope=None) Gets the list of variables that were given that name. Args: given_name: name given to the variable without any scope. scope: an optional scope for filtering the variables to return. Returns: a copied list of variables with the given name and scope.

tf.contrib.distributions.BaseDistribution.log_prob()

tf.contrib.distributions.BaseDistribution.log_prob(value, name='log_prob') Log probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: log_prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.WholeFileReader.num_records_produced()

tf.WholeFileReader.num_records_produced(name=None) Returns the number of records this reader has produced. This is the same as the number of Read executions that have succeeded. Args: name: A name for the operation (optional). Returns: An int64 Tensor.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_shapes()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_static_shapes()

tf.contrib.distributions.StudentTWithAbsDfSoftplusSigma.param_static_shapes(cls, sample_shape) param_shapes with static (i.e. TensorShape) shapes. Args: sample_shape: TensorShape or python list/tuple. Desired shape of a call to sample(). Returns: dict of parameter name to TensorShape. Raises: ValueError: if sample_shape is a TensorShape and is not fully defined.

tf.contrib.distributions.QuantizedDistribution.log_survival_function()

tf.contrib.distributions.QuantizedDistribution.log_survival_function(value, name='log_survival_function') Log survival function. Given random variable X, the survival function is defined: log_survival_function(x) = Log[ P[X > x] ] = Log[ 1 - P[X <= x] ] = Log[ 1 - cdf(x) ] Typically, different numerical approximations can be used for the log survival function, which are more accurate than 1 - cdf(x) when x >> 1. Additional document

tf.contrib.distributions.Mixture.pdf()

tf.contrib.distributions.Mixture.pdf(value, name='pdf') Probability density function. Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if not is_continuous.