tf.contrib.distributions.BetaWithSoftplusAB.sample_n()

tf.contrib.distributions.BetaWithSoftplusAB.sample_n(n, seed=None, name='sample_n') Generate n samples. Args: n: Scalar Tensor of type int32 or int64, the number of observations to sample. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with a prepended dimension (n,). Raises: TypeError: if n is not an integer type.

tf.contrib.distributions.BetaWithSoftplusAB.sample()

tf.contrib.distributions.BetaWithSoftplusAB.sample(sample_shape=(), seed=None, name='sample') Generate samples of the specified shape. Note that a call to sample() without arguments will generate a single sample. Args: sample_shape: 0D or 1D int32 Tensor. Shape of the generated samples. seed: Python integer seed for RNG name: name to give to the op. Returns: samples: a Tensor with prepended dimensions sample_shape.

tf.contrib.distributions.MultivariateNormalDiag.event_shape()

tf.contrib.distributions.MultivariateNormalDiag.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.MultivariateNormalDiag.param_shapes()

tf.contrib.distributions.MultivariateNormalDiag.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mu

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.mu

tf.contrib.distributions.BetaWithSoftplusAB.cdf()

tf.contrib.distributions.BetaWithSoftplusAB.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.distributions.BetaWithSoftplusAB.variance()

tf.contrib.distributions.BetaWithSoftplusAB.variance(name='variance') Variance.

tf.contrib.distributions.Bernoulli.batch_shape()

tf.contrib.distributions.Bernoulli.batch_shape(name='batch_shape') Shape of a single sample from a single event index as a 1-D Tensor. The product of the dimensions of the batch_shape is the number of independent distributions of this kind the instance represents. Args: name: name to give to the op Returns: batch_shape: Tensor.

tf.contrib.distributions.Bernoulli.get_event_shape()

tf.contrib.distributions.Bernoulli.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Mixture.is_continuous

tf.contrib.distributions.Mixture.is_continuous