tensorflow::Tensor::tensor()

TTypes< T, NDIMS >::ConstTensor tensorflow::Tensor::tensor() const

tf.contrib.distributions.MultivariateNormalDiag.mean()

tf.contrib.distributions.MultivariateNormalDiag.mean(name='mean') Mean.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mode()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.mode(name='mode') Mode. Additional documentation from Gamma: The mode of a gamma distribution is (alpha - 1) / beta when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.survival_function()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.survival_function(value, name='survival_function') Survival function. Given random variable X, the survival function is defined: survival_function(x) = P[X > x] = 1 - P[X <= x] = 1 - cdf(x). Args: value: float or double Tensor. name: The name to give this op. Returns: Tensorof shapesample_shape(x) + self.batch_shapewith values of typeself.dtype`.

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_cdf()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.log_cdf(value, name='log_cdf') Log cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: log_cdf(x) := Log[ P[X <= x] ] Often, a numerical approximation can be used for log_cdf(x) that yields a more accurate answer than simply taking the logarithm of the cdf when x << -1. Args: value: float or double Tensor. name: The name to give this op. Returns: logcdf: a Tensor of shape samp

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pmf()

tf.contrib.distributions.GammaWithSoftplusAlphaBeta.pmf(value, name='pmf') Probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.

tf.contrib.distributions.Gamma.get_event_shape()

tf.contrib.distributions.Gamma.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.event_shape()

tf.contrib.distributions.MultivariateNormalDiagWithSoftplusStDev.event_shape(name='event_shape') Shape of a single sample from a single batch as a 1-D int32 Tensor. Args: name: name to give to the op Returns: event_shape: Tensor.

tf.contrib.distributions.Laplace.get_event_shape()

tf.contrib.distributions.Laplace.get_event_shape() Shape of a single sample from a single batch as a TensorShape. Same meaning as event_shape. May be only partially defined. Returns: event_shape: TensorShape, possibly unknown.

tf.contrib.distributions.Dirichlet.param_shapes()

tf.contrib.distributions.Dirichlet.param_shapes(cls, sample_shape, name='DistributionParamShapes') Shapes of parameters given the desired shape of a call to sample(). Subclasses should override static method _param_shapes. Args: sample_shape: Tensor or python list/tuple. Desired shape of a call to sample(). name: name to prepend ops with. Returns: dict of parameter name to Tensor shapes.