tf.contrib.learn.monitors.ExportMonitor.begin()

tf.contrib.learn.monitors.ExportMonitor.begin(max_steps=None) Called at the beginning of training. When called, the default graph is the one we are executing. Args: max_steps: int, the maximum global step this training will run until. Raises: ValueError: if we've already begun a run.

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.variance()

tf.contrib.distributions.MultivariateNormalDiagPlusVDVT.variance(name='variance') Variance.

tf.contrib.learn.TensorFlowEstimator.restore()

tf.contrib.learn.TensorFlowEstimator.restore(cls, path, config=None) Restores model from give path. Args: path: Path to the checkpoints and other model information. config: RunConfig object that controls the configurations of the session, e.g. num_cores, gpu_memory_fraction, etc. This is allowed to be reconfigured. Returns: Estimator, object of the subclass of TensorFlowEstimator. Raises: ValueError: if path does not contain a model definition.

tf.contrib.distributions.BernoulliWithSigmoidP.__init__()

tf.contrib.distributions.BernoulliWithSigmoidP.__init__(p=None, dtype=tf.int32, validate_args=False, allow_nan_stats=True, name='BernoulliWithSigmoidP')

tf.contrib.learn.LinearRegressor.weights_

tf.contrib.learn.LinearRegressor.weights_

tf.contrib.distributions.MultivariateNormalDiag.cdf()

tf.contrib.distributions.MultivariateNormalDiag.cdf(value, name='cdf') Cumulative distribution function. Given random variable X, the cumulative distribution function cdf is: cdf(x) := P[X <= x] Args: value: float or double Tensor. name: The name to give this op. Returns: cdf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.learn.monitors.EveryN.end()

tf.contrib.learn.monitors.EveryN.end(session=None)

tensorflow::TensorShape::begin()

TensorShapeIter tensorflow::TensorShape::begin() const For iterating through the dimensions.

tf.contrib.learn.BaseEstimator.get_params()

tf.contrib.learn.BaseEstimator.get_params(deep=True) Get parameters for this estimator. Args: deep: boolean, optional If True, will return the parameters for this estimator and contained subobjects that are estimators. Returns: params : mapping of string to any Parameter names mapped to their values.

tf.contrib.learn.LinearRegressor.evaluate()

tf.contrib.learn.LinearRegressor.evaluate(x=None, y=None, input_fn=None, feed_fn=None, batch_size=None, steps=None, metrics=None, name=None) See Evaluable. Raises: ValueError: If at least one of x or y is provided, and at least one of input_fn or feed_fn is provided. Or if metrics is not None or dict.