tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.dtype

tf.contrib.distributions.InverseGammaWithSoftplusAlphaBeta.dtype The DType of Tensors handled by this Distribution.

tf.contrib.distributions.InverseGamma.mean()

tf.contrib.distributions.InverseGamma.mean(name='mean') Mean. Additional documentation from InverseGamma: The mean of an inverse gamma distribution is beta / (alpha - 1), when alpha > 1, and NaN otherwise. If self.allow_nan_stats is False, an exception will be raised rather than returning NaN

tf.contrib.distributions.Binomial.is_reparameterized

tf.contrib.distributions.Binomial.is_reparameterized

tf.contrib.crf.CrfForwardRnnCell.__init__()

tf.contrib.crf.CrfForwardRnnCell.__init__(transition_params) Initialize the CrfForwardRnnCell. Args: transition_params: A [num_tags, num_tags] matrix of binary potentials. This matrix is expanded into a [1, num_tags, num_tags] in preparation for the broadcast summation occurring within the cell.

tf.WholeFileReader.reset()

tf.WholeFileReader.reset(name=None) Restore a reader to its initial clean state. Args: name: A name for the operation (optional). Returns: The created Operation.

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.dtype

tf.contrib.bayesflow.stochastic_tensor.CategoricalTensor.dtype

tf.WholeFileReader.supports_serialize

tf.WholeFileReader.supports_serialize Whether the Reader implementation can serialize its state.

tf.contrib.distributions.Bernoulli.prob()

tf.contrib.distributions.Bernoulli.prob(value, name='prob') Probability density/mass function (depending on is_continuous). Args: value: float or double Tensor. name: The name to give this op. Returns: prob: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype.

tf.contrib.graph_editor.get_name_scope_ops()

tf.contrib.graph_editor.get_name_scope_ops(ops, scope) Get all the operations under the given scope path. Args: ops: an object convertible to a list of tf.Operation. scope: a scope path. Returns: A list of tf.Operation. Raises: TypeError: if ops cannot be converted to a list of tf.Operation.

tf.contrib.distributions.Chi2WithAbsDf.log_pmf()

tf.contrib.distributions.Chi2WithAbsDf.log_pmf(value, name='log_pmf') Log probability mass function. Args: value: float or double Tensor. name: The name to give this op. Returns: log_pmf: a Tensor of shape sample_shape(x) + self.batch_shape with values of type self.dtype. Raises: TypeError: if is_continuous.