tf.contrib.learn.BaseEstimator.config

tf.contrib.learn.BaseEstimator.config

tf.IdentityReader

class tf.IdentityReader A Reader that outputs the queued work as both the key and value. To use, enqueue strings in a Queue. Read will take the front work string and output (work, work). See ReaderBase for supported methods.

tensorflow::TensorShape::IsValid()

bool tensorflow::TensorShape::IsValid(const TensorShapeProto &proto) Returns true iff proto is a valid tensor shape.

tensorflow::Tensor::BufferHash()

size_t tensorflow::Tensor::BufferHash() const

tensorflow::Tensor

Represents an n-dimensional array of values. Member Details tensorflow::Tensor::Tensor() Creates a 1-dimensional, 0-element float tensor. The returned Tensor is not a scalar (shape {}), but is instead an empty one-dimensional Tensor (shape {0}, NumElements() == 0). Since it has no elements, it does not need to be assigned a value and is initialized by default ( IsInitialized() is true). If this is undesirable, consider creating a one-element scalar which does require initialization: tensorflow:

tf.contrib.distributions.Beta.entropy()

tf.contrib.distributions.Beta.entropy(name='entropy') Shanon entropy in nats.

tf.contrib.framework.assert_global_step()

tf.contrib.framework.assert_global_step(global_step_tensor) Asserts global_step_tensor is a scalar int Variable or Tensor. Args: global_step_tensor: Tensor to test.

tensorflow::Tensor::unaligned_flat()

TTypes<T>::UnalignedConstFlat tensorflow::Tensor::unaligned_flat() const

tf.contrib.graph_editor.matcher.__init__()

tf.contrib.graph_editor.matcher.__init__(positive_filter) Graph match constructor.

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.graph

tf.contrib.bayesflow.stochastic_tensor.BetaWithSoftplusABTensor.graph